ValérieBenoit(IPG - De Pathologie etdeGénétique),Hilde Brems(UZ Leuven),Pieter-Jan Cortoos(Uz Brussels,Vub - Vrije Brussiteit Uniessiteit noversite intunders of Inlanctity of Intrallity of Intrallity of Intrallity of Intrallint – rifizi Instunter- Ité),Helena Devos(Az Sint-Jan Brugge),Vinciane Dideberg(ChuLiège),Marie-Paule Emonds(Red Cross-vlaanderen,Hila - HisoCompatibiliteit en Imnogenogenenitiit en imnogenogenenita en en himmogenentica实验室),Elodie Fastre(IPG) Re de Bruxelles),Koen Jacobs(Az Sint-Lucas Ziekenhuis,Ghent),Nathalie Lannoy(Sciensano),Henk Louagie(Az Sint-Lucas Ziekenhuis,Ghent,Ghent),Brigitte Maes(Brigitte Maes) Elijk),Yrassol(HôpitalUniversitaire de Bruxelles),LoïcRossi(Riziv - Inami),Stephane Steurbaut(Uz Brussels,vub)安东尼·布林(Anthony-Brain),温哥华)。
1 卢森堡理工大学能源系统学院,53850 拉彭兰塔,芬兰 2 奥尔堡大学规划系,9000 奥尔堡,丹麦 3 奥尔堡大学规划系,2450 哥本哈根,丹麦 4 斯坦福大学土木与环境工程系,斯坦福,CA 94305,美国 5 奥胡斯大学机械与生产工程系,8000 奥胡斯,丹麦 6 悉尼科技大学(UTS)可持续未来研究所,悉尼,新南威尔士州 2007,澳大利亚 7 德国航空航天中心(DLR),网络能源系统研究所,70563 斯图加特,德国 8 哥伦比亚大学地球与环境工程系生命周期分析中心,纽约,NY 10027,美国 9 牛津布鲁克斯大学工程、计算与数学学院,牛津 OX3 0BP,英国 10 Recognis Oy, 01530 万塔,芬兰 11 都柏林大学电气与电子工程学院,都柏林 4,D04 V1W8,爱尔兰 12 佛罗伦萨大学化学系,塞斯托佛罗伦萨,50019,意大利 13 埃因霍温理工大学机械工程系,5612 AZ 埃因霍温,荷兰 14 奥胡斯大学商业发展和技术系能源技术中心,8000 奥胡斯,丹麦 15 萨塞克斯大学商学院科学政策研究部(SPRU),布莱顿 BN1 9SN,英国 16 波士顿大学地球与环境系,波士顿,马萨诸塞州 02215,美国
摘要;阿伏伽德罗常数与质量单位和各种基本物理和电常数有关,是精确测量分子质量的必要条件。由于半导体技术的最新成功,硅元素因其晶体中近乎完美的原子结构而成为精确测量的通用参考材料的可能候选者。使用硅晶体确定阿伏伽德罗常数的项目是世界标准组织研究的主题,具有历史意义。国家医学研究实验室的团队刚刚开始使用 1 千克完美硅球的长期项目的最后阶段。它使用光学干涉仪测量球体的直径,并使用国家千克标准测量其质量,从而得到球体的宏观密度。它还测量了由相同硅锭制成的 X 射线干涉仪的晶格间距。后者将与与比利时 CBNM. Geel 合作确定的平均原子质量相结合,得出微观密度。这两个密度之间的等效性提供了阿伏伽德罗常数。目前声称的测量精度为体积 O.3ppm、质量 O.05ppm、晶格间距 Ippm。该项目对相应测量的目标精度将提供总不确定度小于 0.3ppm 的阿伏伽德罗常数。 lut 修订于
1 Angie Research,1 Pl。Samule The Champlain,Pais Porce,双鱼座,92930 PARAS,法国2部门或电动机,系统和金属工程,Turop Swindth 131,Switching Park。 34,53850 Lappeenran Ranta,芬兰4电气和计算机建筑,K.U.Seecte,Castle Park Arenberg,Tor Park 8310,Tor Park 8310,3600,3600,3600,比利时6大学,比利时6大学6 University 6 University 6 University 6 University 6 University 6 University 6 University,Belgium 6 University 6 University。已经是“蒙特雷”(UQAM),De´ party the Strat',您,Noccessabilite的社交环境,E´Coles Sciences(ESG),Opian Economic Labory Labory Labory,University'Place palary,Place,Place,Place D Marre´t Marre´t Marre´the后者The后者,75016 Paris,French 8 castainalibal and Infrastraster and Canver Team,33美国9部门或核科学,以及工程学,弥撒和工程,马萨诸塞州或技术(麻省理工学院),美国马萨诸塞州剑桥市10隆德大学可持续性研究中心(卢斯科斯),瑞典隆德大学11 Hyrogen Laboratory 11 Hyrogen实验室或AV。Moniiz地区〜A,207,里约热内卢21941-594,巴西12 Engie Impact,Simon Bolivaan 34 1000出发,大学或Tex。停止C2200,TX 78712-1591,美国,美国14 KU LEUVEN,ECOM,BEL GEL,BELG,BEL GELIM,BEL GELIM,BELIM,或经济,或经济学,或经济学,或经济学,或经济学,或经济,纽约市,或经济比利时比利时鲁道鲁文卢文,比利时卢文 *corpoundce:markety@yhoo.nh https://doi.org/10,1016/j.isci.sci。 2024.1111111111111111111111111111111111111111111111111111111111111111111111ME
可重新配置无牌照费用山景,2021年5月3日 - 嵌入式FPGA(EFPGA)IP(EFPGA)IP,建筑和软件的领先供应商Flex logixom Technologies,Inc。今天宣布,它已与Air Force Research Logix(Afr/ry eff)签署了广泛的许可证,该公司已与Flex®EFF签署了广泛的许可。在任何美国政府计划和活动中。这项新协议大大降低了利用EFPGA在政府赞助计划中的重新配置,成本和市场上的收益的成本障碍。“ Flex Logix已将EFLX IP许可为国防工业基础的许多公司,并且看到一些项目通过许可最新技术,因为高级节点的总IP成本超过了计划预算,” Geoff Tate,首席执行官兼Flex Logix的联合创始人Geoff Tate说。“通过与AFRL合作,我们能够减少这些障碍,从而使在所有美国政府计划中使用EFLX,甚至预算较小和研究的障碍。” AFRL传感器局正在领导着未来的信任和保证微电子能力的研究和开发,促进了采用创新的下一代解决方案,以建立一个有弹性的供应链,以实现高级,安全和可靠的微电子学。“美国政府是FPGA的第三大用户。使用Flex logix的许可证为通过制造链增加半导体信任和保证的机会开辟了很多机会,并为ASICS提供了终身计划的升级性。”使用Flex Logix的EFLX,CHIP开发人员可以实现EFPGA,从数千名LUT到数十万个LUTS,其性能和密度为每平方毫米,类似于同一流程生成中领先的FPGA公司。eflx efpga是模块化的,因此可以在整个芯片中散布阵列;可以具有全逻辑或重型DSP;并可以将RAM集成到许多类型的数组中。
摘要:能源系统向 100% 可再生能源 (RES) 转型的趋势正在开始显现其影响,并越来越受到人们的接受。在这种情况下,大型光伏和风力发电厂将发挥主导作用。同时,随着电力运输、热泵和电转气技术的日益普及,能源消费的电气化预计将进一步发展。RES 的不可完全预测性是其众所周知的缺点,考虑到能源转型,它将需要使用储能技术,特别是大规模的电能到化学转化和化学能到电能的再转化。尽管如此,在这种情景下,关于中小型 CCHP 技术的潜在作用的分析文献还很少。因此,本文的目的是探讨在上述情景下,由废热驱动的热电联产 (CHP) 和/或冷热电联产 (CCHP) 技术可能发挥的作用。首先,本文对可能由低温余热源供电的中小型热电联产技术进行了回顾。然后,对拉彭兰塔理工大学研究人员研究的 100% 可再生能源情景进行了回顾(通过所谓的“LUT 模型”),以确定可以为中小型热电联产技术供电的潜在低温余热源。其次,通过从双方收集的交叉数据,介绍了上述余热源和所回顾的热电联产技术之间的一些可能的相互作用。结果表明,最适合所选热电联产技术的余热源是与燃气轮机(热回收蒸汽发生器)、蒸汽轮机和内燃机相关的余热源。还进行了初步的经济分析,结果表明,在电力和热力生产方面,所考虑的热电联产技术每单位安装千瓦的潜在年节约额分别可达 255.00 欧元和 207.00 欧元。最后,讨论了 100% 可再生能源情景中热电联产/冷电联产集成的碳足迹前景。
The CETP SRIA Editors and Publishers Group (main authors in bold) Michael Hübner and Hans-Günther Schwarz (Austrian Ministry for Climate Action), Susanne Meyer (AIT Austrian Institute of Technology), Lut Bollen (Flemish Department of Economy, Science & Innovation), Alain Stéphenne (Walloon Region, Department of Energy and Sustainable Building), Daria Vladikova (保加利亚科学学院),冈特·西迪奇(瑞士联邦能源办公室),埃夫根尼奥斯·埃佩米尼杜(Evgenios Epaminondou)(塞浦路斯副研究,创新和数字政策部),西蒙·穆勒(ShimonMüller)(捷克工业和工业部),贝亚·巴尔伯拉·纳伊兹(Baya Barboranuñez(taCr),thoms thoms, (丹麦气候,能源和公用事业部),鲍里斯·马丁内斯(克罗地亚经济与可持续发展部),克里斯蒂安·莱普(Kristjan Lepp)和伊尔耶·莫德雷(ErjeMöldre)(爱斯顿州经济事务和交流部),佩德罗·罗德里格斯(Pedro Rodriguez),贾塔·贾塔(Jatta Jatta)罗森伯格(希腊开发和投资部),路易莎·帕帕米克鲁利(GSRT),乔伊斯·阿切森(乔伊斯·阿切森(Seai)(Seai),古德尼·阿·乔汉尼斯(Gudni AJóhannesson)(冰岛能源管理局),里卡多·巴斯西(Riccardo Basosi),弗朗西斯·巴西勒(Francesco basile),弗朗西斯科·巴西勒(Francesco basile)代表欧盟),贡达·Šlihta(州教育发展局拉脱维亚),大曼塔斯·克雷斯(Daumantas Kerezis)(立陶宛能源部),莎拉·迪奥利(Sarah Diouri),萨拉·迪奥利(Sarah Diouri)(欧洲摩洛哥)(Iresen Morocco),鲁本·普林斯(Ruben Prins (SINTEF), Ragnhild Rønneberg (RCN), Maciej Kiełmiński (Polish Ministry of Higher Education), Isabel Cabrita (DGEG), Elena Simion (UEFISCDI), Lisa Lundmark , Fredrik Lundström and Svante Söderholm (Swedish Energy Agency), Gregor Rome (Ministry of基础架构),çağrıyıldırım(Tubitak)
1 布鲁克海文国家实验室物理系,纽约州厄普顿,11973,美国 2 密西西比大学物理与天文系,密西西比州牛津,38677,美国 3 内布拉斯加大学林肯分校物理与天文系,内布拉斯加州林肯市 68588,美国 4 伦敦大学皇家霍洛威学院物理系,埃格姆希尔,埃格姆萨里,TW20 0EX,英国 5 ICAS-ICIFI-UNSAM/CONICET,阿根廷,和巴西里约热内卢联邦大学 6 加利福尼亚大学物理与天文系,加利福尼亚州戴维斯,95616,美国 7 加利福尼亚大学物理与天文系,加利福尼亚州欧文,92697,美国 8 耶鲁大学物理系,康涅狄格州纽黑文,06511,美国 9 费米国家加速器实验室,伊利诺伊州巴达维亚, 60510,美国 10 洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州,87545,美国 11 桑福德地下研究设施,莱德,南达科他州,57754,美国 12 伯特利大学物理与工程系,明尼苏达州圣保罗,55112,美国 13 《对称杂志》,SLAC 国家加速器实验室,门洛帕克,加利福尼亚州,94025,美国 14 拉德堡德大学理学院,6525 AJ 奈梅亨,荷兰 15 赫尔辛基物理研究所 (HIP) PO Box 64,00014 赫尔辛基大学,芬兰,拉彭兰塔理工大学 (LUT),工程科学学院,Box 20,53851 Lappeenranta,芬兰 16 皇后大学,物理系,工程物理与天文学,金斯顿,加拿大 16 SNOLAB,克赖顿矿井 9 号,1039 Regional Road 24,萨德伯里,安大略省,加拿大 17 波多黎各马亚圭斯大学物理系,波多黎各马亚圭斯,00681,美国 18 RadiaBeam Technologies,加利福尼亚州圣莫尼卡,90404,美国 19 纳尔逊·曼德拉大学理学院,南非格贝哈 20 圣母大学物理与天文系,印第安纳州圣母,46556,美国 21 冈山大学物理系,日本冈山,700-8530 22 加利福尼亚大学伯克利分校物理系,加利福尼亚州伯克利,94720,美国 23 美国科学促进会科学与技术政策研究员,华盛顿特区,20005,美国 24 印第安纳大学物理系,印第安纳州布卢明顿,47405,美国
美国国家标准局对水的质量进行的研究始于 1931 年左右,当时由 E. C. Bingham 主持的一个委员会建议做出新的测定。工作断断续续地进行着,直到 1952 年,瑞典、科和戈弗雷 [1] 发表了他们的工作成果,将 20°C 时水的粘度建议值从 1.005 厘泊 (cP) 改为 1.002 cP。1957 年,克斯利指出,之前的所有测量都是通过非常相似的实验进行的,有可能是一个未知的系统误差影响了所有结果。当时,开始了两种不同的绝对测量工作。其中一项实验是测量充满液体的球体扭转振动的周期。另一项实验是测量毛细管上水龙头处的压力。这两个实验再次断断续续地进行着。1959 年,Kearsley 发表了对扭球粘度计的分析 [2]。该项研究的结果发表在相邻的论文 [3] 中。1968 年,我们决定构造一个精确的通道,以避免测量小管柱的半径和半径分布时遇到的一些困难。根据计量部门的 T. R. Young 先生的建议,我们决定采用将两个圆柱形杆压在平板上形成的通道。这一建议促成了这项工作
1年生命周期分析中心,工程与应用科学学院,哥伦比亚大学,纽约,纽约,纽约,10027,美国; marco.raugei@brookes.ac.uk(M.R.); mg3217@columbia.edu(M.G.); el2828@columbia.edu(E.L。)2布鲁克黑文国家实验室,跨学科科学系,纽约州奥普顿市815号建筑物,美国11973,美国3号工程,计算机和数学学院,技术,设计和环境学院,设计与环境学院W2 6LA,英国5卢特大学能源系统学院,芬兰53850 Lappeenranta; Christian.breyer@lut。Fif6民用与环境工程系,萨里大学,吉尔福德GU2 GU2 7XH,英国; s.bhattacharya@surrey.ac.uk 7环境工程与地球科学,克莱姆森大学,克莱姆森,SC 29634,美国; Madale@clemson.edu 8欧洲委员会,意大利ISPRA联合研究中心欧洲委员会; arnulf.jaeger-waldau@ec.europa.eu 9 Institutphotovoltaïqueld'elede france(ipvf),CNRS UMR 9006,18 Boulevard Thomas Gobert,91120 palaiseau,法国帕莱索; daniel.lincot@cnrs.fr 10环境研究系,圣劳伦斯大学,美国纽约州13617,美国; dmurphy@stlawu.edu 11清洁电源研究,美国加利福尼亚州纳帕第三街1541号,美国加利福尼亚州94559; marcp@cleanpower.com 12 First Solar,美国坦佩,AZ 85281,华盛顿街350号; parikhit.sinha@finferstsolar.com 13 Angus Rockett,冶金与材料工程系,科罗拉多州矿业学校305B山丘,美国伊利诺伊州街1500号,美国伊利诺伊州街1500号,美国公司80401; arockett@mines.edu 14 Inl-International Iberian纳米技术实验室,AV。MestreJoséveigas/n,4715-330 Braga,葡萄牙; sascha.sadewasser@inl.int 15 HelioSourcetech,8987 E. Tanque Verde,Suite 309,PMB216,Tucson,Tucson,AZ 85749,美国; bjs@heliosourcetech.com 16 Sunpower创始人,退休,24700 Voorhees Drive,Los Altos Hills,CA 94022,美国; dickswanson15@gmail.com 17 Amrock Group,悉尼,新南威尔士州2052,澳大利亚; pjverlinden@icloud.com 18新南威尔士大学光伏和可再生能源工程学院,新南威尔士大学,新南威尔士州2052年,澳大利亚1952年,澳大利亚19号国家主要实验室,Trina Solar,Xinbei District,changzhou 213031,中国