(紫线)。 (a) 沿无量纲不可约第一布里渊区边界的色散函数;(b) 沿无量纲不可约第一布里渊区子域边界的色散函数;(c) 周期性晶胞和无量纲第一布里渊区(以浅橙色突出显示无量纲不可约第一布里渊区);(d) 无量纲不可约第一布里渊区的子域。
核聚变是一种众所周知的能源,它有可能为人类的未来提供可持续、环保、可调度的高功率密度能源供应解决方案。目前,利用核聚变能最有前途的方法是基于专门设计的环形装置内的磁约束高温等离子体 [1]。对热核磁约束聚变的持续研究推动了当前示范聚变反应堆 (DEMO) 的设计活动,该反应堆预计将作为所谓的托卡马克型反应堆实现 [2]。实现 DEMO 反应堆的一个主要挑战是设计和制造高负荷等离子体面对部件 (PFC),这些部件必须在聚变运行期间承受强烈的粒子、热量和中子通量 [3]。对于此类 PFC,需要特定的高性能材料才能设计出可靠的部件。对于直接面对聚变等离子体的材料,钨 (W) 目前被认为是未来磁约束热核聚变反应堆的首选等离子体面对材料 (PFM)。这主要是因为 W 表现出较高的溅射阈值能量,以及作为聚变反应燃料的氢同位素的低保留率 [4]。对于 DEMO 反应堆中的 PFC,一个特别关键的方面是瞬态壁面负载,例如,由于托卡马克中的等离子体不稳定性而产生的瞬态壁面负载。此类瞬态事件可能导致 PFC 上出现非常强烈的热负载(数十 GW/m 2,持续时间为几毫秒),进而严重损坏反应堆的包层结构 [5]。为了保护聚变反应堆的壁免受此类事件的影响,目前正在研究特定的限制器 PFC。这些组件预计将阻挡到达反应堆壁的短暂而强烈的热脉冲,以使这些限制器组件后面的包层结构不会热过载或损坏。这种限制性 PFC 的一种可能的材料解决方案是使用定制的多孔 W 材料。利用这种超材料,可以实现将由于结合了多孔性而具有的总体低热导率与 W 的有益等离子体壁相互作用特性相结合的组件。然而,W 是一种难以加工的材料,因为它本质上是一种硬而脆的金属,这意味着加工 W 既费力又昂贵。针对这些限制,增材制造 (AM) 方法代表了一种实现几何复杂的 W 部件的通用方法。AM 工艺的特点是,在计算机控制下通过逐层沉积材料来创建三维物体,这意味着使用这种方法可以直接实现具有高几何复杂性的部件。近年来,利用激光粉末床熔合 (LPBF) 技术对金属进行 AM 加工已取得重大进展,该技术无需粘合剂相即可对多种金属进行直接 AM 加工。在 LPBF 加工过程中,原料粉末材料通过聚焦在粉末床上的激光束选择性地熔化和固结 [6]。封面图片展示了通过 LPBF 制造的具有定制晶格结构的 W 样品的顶视图。目前正在针对如上所述的限制器 PFC 研究此类多孔 W 晶格。图示样品是一种晶格结构,它源自基于十四面体重复(开尔文模型)的参数固体模型。这种模型过去也应用于开孔铝泡沫 [7] 并得到验证。图示 W 晶格的参数
添加剂制造(AM; 3D打印)是一种制造方法,它可以从数字设计文件中创建一个对象层。AM的最新进展现在还允许实现功能组件,除了早期采用原型制作。AM的主要优点是设计自由,它通过减法,形成性或织物制造方法促进了无法或实用的结构的使用。航空航天和医疗行业将AM纳入其生产链中,领导了。但是,天文学界的吸收速度很慢。2017年,一个多机构的欧洲欧洲团队开始在A2IM(添加剂天文学综合组件制造)上合作,这是一个较大的Opticon框架(天文学的光学红外协调网络)中的工作包,并由欧洲委员会委员会2020计划。Schnetler等人在此会议上介绍了A2IM工作包的概述。(2020),1在Farkas等人的论文中讨论的其他A2IM原型贡献。(2020),2 Vega等。(2020)3和Roulet等。(2020)。4本文介绍了针对纳米 - 卫星应用的轻量级镜像技术的A2IM原型开发。
含量和低成本的半导体,例如磷化锌(Zn 3 p 2),是下一代光伏应用的有希望的候选者。但是,有利于缺陷形成和可控掺杂的市售基材的合成是限制设备性能的挑战性缺点。更好地评估相关特性,例如结构,晶体质量和缺陷,将允许更快地进步Zn 3 P 2,从这个意义上讲,拉曼光谱可以发挥不可估量的作用。为了提供Zn 3 p 2的完整拉曼光谱参考,这项工作从实验和理论的角度来看,对四侧结构的Zn 3 P 2(空间组P 4 2 / NMC)纳米线的振动特性进行了全面分析。低温高分辨率的拉曼极化测量已在单晶纳米线上进行。不同的极化构型允许选择性增强1G,B 1G和E G拉曼模式,而从互补的不偏度拉曼测量中鉴定出B 2G模式。与洛伦兹曲线的所有拉曼光谱同时进行反向卷积允许鉴定33个峰,这些峰已在39个理论上预测的特定元素中分配给了34个(8 a 1g + 9 b 1g + 3 b 2g + 14 e g)。实验结果与基于密度功能理论的第一原理计算所计算的振动频率非常吻合。在声子分散图中观察到了三个独立的区域:(i)低频区域(<210 cm-1),该区域由Zn相关振动,(ii)中间区域(210 - 225 cm-1)主导,该区域(210 - 225 cm-1)代表真正的声子隙,无观察到的振动,(III)高频区域(III)高频率(III)primitation frirications(> 225 cm-cm-1)。振动模式的分析表明,非脱位模式主要涉及沿长晶体轴(C轴)的原子运动,而退化模式主要对应于平面振动,垂直于长C轴。这些结果为识别四方Zn 3 p 2相提供了详细的参考,可用于构建基于拉曼的方法,用于有效筛选散装材料和膜,这可能包含结构性不均匀性。
可扩展量子计算的首选纠错方法是使用格手术的表面代码。基本的格手术操作,即逻辑量子位的合并和分裂,对逻辑状态的作用是非单一的,而且不容易被标准电路符号捕获。这就提出了一个问题:如何最好地设计、验证和优化使用格手术的协议,特别是在具有复杂资源管理问题的架构中。在本文中,我们证明了 ZX 演算(一种基于双代数的量子图解推理形式)的运算与格手术的运算完全匹配。红色和绿色“蜘蛛”节点匹配粗糙和平滑的合并和分裂,并遵循匕首特殊结合 Frobenius 代数的公理。一些格手术操作需要非平凡的校正操作,这些操作在使用 ZX 演算时以图集合的形式原生捕获。我们通过考虑两种操作(T 门和产生 CNOT)首次体验了微积分作为格手术语言的强大功能,并展示了 ZX 图重写规则如何为这些操作提供新颖、高效且高度可配置的格手术程序。
我们提出了一种确定半导体背景掺杂类型的方法,即在过度蚀刻的双台面 pin 或 nip 结构上使用电容电压测量。与霍尔测量不同,此方法不受基板电导率的限制。通过测量具有不同顶部和底部台面尺寸的器件的电容,我们能够最终确定哪个台面包含 pn 结,从而揭示本征层的极性。当在 GaSb pin 和 nip 结构上演示时,此方法确定该材料是残留掺杂的 p 型,这已由其他来源充分证实。然后将该方法应用于 10 单层 InAs/10 单层 A1Sb 超晶格,其掺杂极性未知,并表明该材料也是 p 型。
超短光信号的全部表征,包括它们的相和相干性能,对于对新型工程光源的发展和理解,例如光学频率梳,11-13个频率编码量子态,14和光学孤子分子至关重要。15此外,完全的光信号表征对于通过光纤网络16和波长划分传输格式的传播信息的通信很重要,在该格式中,单个载流子之间的相对阶段很重要。17用于测量光脉冲,频率分辨的光门控(Frog)18的最常用的甲基OD和用于直接电场重建(蜘蛛)的光谱相干涉测量法(Spider),11,19需要复杂的多模板光学设置,以便重建相干性的振幅和程度。具有仅具有单个空间模式的光谱相信息能力的能力。这包括超快速信号转换方法,例如
图 1:具有不同平均粒子/晶粒尺寸的 SiGe 合金和 Mg 3 Sb 2 样品的晶格热导率(按照传统方法计算)κ L ( κ total − LσT ) 与加权迁移率 µ W 12,14(推导方法见 SI)的关系。 (a)n 型(P 掺杂)和 p 型(B 掺杂)SiGe 在室温下均呈现正相关性。 (b)对于高温(573K)下的 Mg 3 Sb 2,电子不会被晶界明显散射,除最小晶粒尺寸样品外,加权迁移率相同。 相反,在低温(323K)下,随着晶粒尺寸的减小,µ W 显著降低,因此低 µ W 是晶粒边界电阻的良好指标。 κ L 随 µ W 降低而增加的趋势表明即使没有测量晶粒尺寸也存在晶界效应。
Newell, S. 和 Goggins, J. (2017)。施工期间混凝土格构梁板的实时监测。土木工程师学会会刊-结构和建筑,1-16(提前印刷)。https://doi.org/10.1680/jstbu.16.00198