(A) 顶部:将目标 Gal4(深蓝色,顶部构建体)与编码 Cas9 的版本 2 (V2) 供体菌株杂交,该菌株由 X 上的 vasa 启动子控制(未显示),而 CyO 上的供体构建体则包含 T2A。LexA 由 floxed 3xP3-RFP、黄色+ 盒标记,两侧是 Gal4 同源臂和 U6 驱动的向导 RNA(CyOHACKy.V2,y +、RFP +)。从上往下第三行:得到的 HACKed 染色体,其中 Gal4 ORF 已被破坏并由 T2A.LexA 替换,由视觉标记黄色+和 RFP+标记。底部:与 hs- Cre 杂交后,黄色 +、RFP + 盒被移除。
抗生素耐药性是全球健康的迫切威胁,耐多药病原体正变得越来越普遍。细菌 SOS 通路在感染期间发生 DNA 损伤时发挥作用,启动多种促生存和抗药性机制,如 DNA 修复和超突变。这使得 SOS 通路成分成为可能对抗耐药病原体并减少耐药性出现的潜在靶点。本综述讨论了 SOS 通路的机制、潜在靶点 AddAB、RecBCD、RecA 和 LexA 的结构和功能,以及开发这些蛋白质的选择性小分子抑制剂的努力。这些抑制剂可以作为靶点验证的宝贵工具,并为急需的新型抗菌疗法奠定基础。
扩展果蝇工具包,以双重控制基因表达的乔纳森·齐林1,*,芭芭拉·朱西亚克2,†,拉斐尔·洛佩斯1,†,本·埃文(Ben Ewen)校园1,贾斯汀·A·博斯奇1,贾斯汀·A·博世(Justin A.马萨诸塞州波士顿,哈佛医学院,哈佛医学院2)生理学与生物物理学系,加利福尼亚大学,欧文,加利福尼亚州3)霍华德·休斯医学院,马萨诸塞州波士顿 *相应的作者†这些作者对这项工作的摘要同样贡献了在两种不同的组织中,在同一动物中进行了两种不同的组织,尤其是在同一动物中,尤其是一项阶级。通过结合GAL4/UAS和第二个二元表达系统(例如Lexa-System或QF系统)的技术使这种研究成为可能。在这里,我们描述了一种试剂资源,该试剂促进了在各种果蝇组织中综合使用GAL4/UAS和第二个二元系统。专注于具有良好特征的GAL4表达模式的基因,我们通过CRISPR敲击产生了一组40多个Lexa-Gad和QF2插入,并验证了它们在幼虫中的组织特异性。我们还构建了单个向量中编码QF2和Lexa-GAD转录因子的构造。成功地集成了该构建体中的蝇基因组后,使用FLP/FRT重组来隔离仅表达QF2或Lexa-GAD的飞行线。最后,使用新的兼容shRNA矢量,我们评估了Lexa和QF系统用于体内基因敲低,并正在生成此类RNAi飞行线的库作为社区资源。2007;珀金斯等。 2015)。2007;珀金斯等。2015)。一起,这些Lexa和QF系统向量和飞行线将为需要以同一动物以正交方式激活或抑制两个不同基因的研究人员提供一组新的工具。简介组合二进制系统使用RNAi或CRISPR的功能丧失(LOF)和功能增长(GOF)研究的大多数试剂依赖于GAL4/UAS介导的表达(Brand and Perrimon 1993; Dietzl等人。2015; Zirin等。2020;港口和布特罗斯2022)。但是,一些研究,例如对细胞间或器官间通信的研究,需要同时使用两个独立的二元转录系统。例如,双重表达系统已被用来研究果蝇胰岛素样肽如何与大脑释放以控制器官生长(Colombani等人。2015),分析从嗅觉神经元到血细胞的信号传导(Shim等人2013),独立操纵配体产生和配体接收细胞(Yagi等2010),并可视化组织中克隆细胞种群之间的相互作用(Bosch等人基于需要同时操纵给定组织中不同细胞的集合,Lexa/Lexaop系统(Lai and Lee 2006)和QF/Quas System(Potter等人2010; Potter and Luo 2011)已开发。没有系统的研究比较这两个系统,只有轶事证据支持一个系统。
理学硕士 I 期 MM:75 分子生物学单元 1:基因组的结构和组织(8 小时)染色质组织 - 组蛋白和 DNA 相互作用组、染色质结构、核小体、染色质组织和重塑、染色体、异染色质和真染色质、扭转应力、DNA 拓扑结构 - 链接数、扭曲、扭动、超螺旋、拓扑异构体。第二单元:DNA复制、修复和重组(8 小时)DNA复制模型,Meselson 和 Stahl 实验,DNA聚合酶,病毒、细菌和真核生物中的 DNA 复制,复制叉,复制的校对和保真度,末端复制问题和端粒酶,复制抑制药物,DNA损伤剂,DNA修复机制(核苷酸切除修复、碱基切除修复、错配修复、重组修复、双链断裂修复、转录偶联修复、重组——同源、非同源和位点特异性重组)第三单元:基因表达和调控(8 小时)原核和真核基因的结构、调控区域、转录因子、转录机制、RNA聚合酶、RNA加工结构和不同 RNA 类型的功能、起始复合物的形成、延长、终止;操纵子概念-乳糖操纵子、色氨酸操纵子、arb操纵子、𝜆-阻遏物、lexA阻遏物、噬菌体的溶源性和溶解性循环、核糖开关、转录抑制剂。
4-羟基苯甲酸(PHBA)是粘酸和液晶聚合物的重要工业前体,其生产基于石化工业。为了减少我们对化石燃料的依赖并提高可持续性,微生物工程是一种更具吸引力的方法,用于替代传统的化学技术。但是,微生物菌株的优化仍然受筛选阶段的高度限制。生物传感器通过减少筛选时间并实现更高的吞吐量来帮助减轻这一问题。在本文中,我们构建了一个名为SBAD的合成生物传感器,由R. palustris的HBAR的PHBA结合结构域组成,N-terminus的Lexa DNA结合结构域和C-Terminus的反式激活域B112。在存在不同的苯甲酸衍生物的情况下测试了SBAD的响应,并通过流量细胞仪测量细胞荧光输出。除了其他羧酸(包括P-氨基苯甲酸),水杨酸,蒽,阿司匹林和苯甲酸在内的其他羧酸之外,还发现了生物传感器通过培养基中外部添加PHBA激活。此外,我们能够证明该生物传感器可以检测到遗传修饰的酵母菌菌株中PHBA的体内产生。在生物传感器荧光和PHBA浓度之间观察到了良好的线性。因此,该生物传感器将非常适合作为高吞吐量筛选工具,可通过代谢工程生产苯甲酸衍生物。
操纵基因活性和控制转基因表达的能力对于研究基因功能至关重要。虽然对于秀丽隐杆线虫来说,有几种用于修改基因或分别控制表达的遗传工具,但是没有遗传方法可以产生既能破坏基因功能又能为表达被破坏基因的细胞提供遗传途径的突变。为了实现这一点,我们开发了一种基于 cGAL(一种用于秀丽隐杆线虫的 GAL4-UAS 二分表达系统)的多功能基因陷阱策略。我们设计了一个 cGAL 基因陷阱盒并使用 CRISPR/Cas9 将其插入目标基因中,从而创建一个双顺反子操纵子,该操纵子可同时在表达目标基因的细胞中表达截短的内源蛋白和 cGAL 驱动基因。我们证明我们的 cGAL 基因陷阱策略可以稳健地产生功能丧失的等位基因。将 cGAL 基因陷阱系与不同的 UAS 效应菌株相结合,使我们能够挽救功能丧失的表型,观察基因表达模式,并在时空上操纵细胞活动。我们表明,通过显微注射或基因杂交的重组酶介导的盒式交换 (RMCE),可以进一步在体内设计 cGAL 基因陷阱系,以轻松地将 cGAL 与其他二分表达系统的驱动器(包括 QF/QF2、Tet-On/Tet-Off 和 LexA)交换,以生成在同一基因组位置具有不同驱动器的新基因陷阱系。这些驱动器可以与它们相应的效应物结合以进行正交转基因控制。因此,我们基于 cGAL 的基因陷阱是多功能的,代表了秀丽隐杆线虫基因功能分析的强大遗传工具,这最终将为基因组中的基因如何控制生物体的生物学提供新的见解。