锂离子电池(LIB)由于高能密度而引起了多年的高级电源和能源储能设备的极大关注。随着对LIB的大量可逆能力,高安全性和长期稳定性的迅速增长,近几十年来,更多的探索集中在开发高性能阴极材料上。碳基材料是自由度高的电导率,较大的表面积和结构机械稳定性,是LIB的最有前途的阴极修饰材料之一。此功能综述系统地概述了Libs的碳基材料的显着进步。首先代表了使用碳涂层的阴极材料的常用合成方法和最近的研究进展。然后,总结了LiCoo 2,Lini X Co Y Al 1-X-Y O 2和LifePo 4阴极材料的最新成就和挑战。此外,还讨论了对阴极材料的性能的不同基于碳的纳米结构的影响。最后,我们总结了碳基材料对LIB的阴极材料设计的挑战和观点。
摘要:在当前的社会挑战(例如气候中立,行业数字化和循环经济)的背景下,本文探讨了改善电动汽车(EV)电池组的回收实践的重要性,并特别关注锂离子电池(LIBS)。为了实现这一目标,本文考虑了过去10年的系统审查(使用Google Scholar,Scopus和Web of Science作为搜索引擎),以检查现有的回收方法,机器人/协作式拆卸细胞以及相关的控制技术。目的是提供全面而详细的审查,可以作为工业领域未来研究的宝贵资源。通过分析领域的当前状态,本综述确定了新兴的需求和挑战,这些需求和挑战是成功实施自动机器人拆卸细胞,以用于终止寿命(EOL)电子产品,例如EV LIBS。本文提出的发现增强了我们对回收实践的理解,并为这一重要领域的更精确的研究方向奠定了基础。
以锂离子电池(LIB)形式的储能储存已在消费者,住宅,商业,工业和运输部门的广泛应用中越来越多地使用和接受。现在用于越来越大的应用,包括电动踏板车,电动自行车,电动汽车和电池储能系统(BESS),用于住宅,社区,社区,商业,商业和网格尺度的应用程序,包括电子烟和VAPES,手机,平板电脑,笔记本电脑和电动工具等便携式电子设备的技术。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。 libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。 一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。
化石燃料(煤炭,天然气和石油)在过去一个世纪一直是我们的主要能源供应,占每年消耗的总能源的80%以上。如此持续的巨大消费量导致快速耗尽,同时导致许多环境问题并改变我们的生态系统。为了应对实现长期可持续社会的这些挑战,电气化是有希望的,可以促进广泛实施可再生能源,例如太阳能和风能。为此,便携式电源存储(EES)系统至关重要,它存储从可再生能源收获的电力并将其提供给能量消耗扇区,例如,便携式电子,电动汽车(EV)和智能电网。在这方面,锂离子电池(LIB)是迄今为止最成功的EES设备在便携式电子产品中起主要作用的EES设备。此外,由于运输消耗了近三分之一的总能量,因此运输电气很重要。1目前,LIB正在渗透EV市场,而全球各国政府正在为EV销售设定各种计划。在这种情况下,迫切需要更好的电池,因为最先进的液体在
摘要:粘合剂的设计在实现锂离子电池(LIBS)中持久的高功率并延长其整体寿命方面起着关键作用。本综述强调了在LIBS中使用时粘合剂必须具有的必不可少的特征,这些因素考虑了诸如电化学,热剂,热和色散稳定性,与电解质的兼容性,溶剂,机械性能和电导率的溶解度。在阳极材料的情况下,具有鲁棒机械性能和弹性的粘合剂对于维护电极完整性至关重要,尤其是在发生实质体积变化的材料中。对于阴极材料,粘合剂的选择取决于阴极材料的晶体结构。粘合剂设计中的其他重要考虑因素包括成本效益,附着力,加工性和环境友好性。结合低成本,环保和可生物降解的聚合物可以显着促进可持续的电池开发。本评论是理解高性能LIB粘合剂设计的先决条件的宝贵资源,并为各种电极配合的粘合剂选择提供了见解。本综述中阐明的发现和原理可以推断到其他高级电池系统,为开发以增强性能和可持续性为特征的下一代电池的课程图表。
锂离子电池(LIB)在产品中具有核心作用,从便携式设备到电网的大规模储能,并继续进行快速开发。电动汽车的激增增强了对技术进步和新一代技术的关注。结构电池因其多功能性和轻质特性而受到了极大的关注。这些电池利用碳纤维将其机械强度与单个结构中的电池功能相结合,从而减少了总重量并增加了能量密度。类似于传统的LIB,结构电池包含负电极和正极电极,并在结构电池电解质(SBE)中加固。虽然已经对碳纤维作为负电极进行了广泛的研究,但与结构电池概念一致的正极电极的发展相对稀缺。
纳米尺度上的光与物质的相互作用是许多物理问题的核心,包括用于表征锂离子电池 (LIB) 的光谱技术。对于物理学家和化学家来说,时间相关量子力学中最重要的课题之一是光谱学的描述,它指的是通过物质与光场的相互作用来研究物质。从经典的角度来看,光与物质的相互作用是振荡电磁场与带电粒子共振相互作用的结果。从量子力学的角度来看,光场将起到耦合物质量子态的作用。光与物质的相互作用从根本上讲是量子电动力学的。在许多情况下,它们被描述为电子的量子跃迁,伴随着光量子的发射、吸收或散射 [1]。在过去的几十年里,一些实验已经研究了电磁波与 LIB 中使用的各种材料的相互作用,以造福社会 [2-4]。目前,电池界的研究
锂离子电池 (LIBs) 具有高能量密度和长寿命的特点,在便携式电子设备和电动汽车方面取得了显著成功 [1-4]。然而,由于有机电解液、锂储量不足和成本高等问题,LIBs 的进一步应用受到限制 [5-7]。因此,有必要开发替代性二次电池来取代 LIBs [8,9]。水系锌金属电池 (AZMBs) 已成为有竞争力的候选电池,因为锌 (Zn) 金属负极具有优异的理论容量 (820 mAh g −1 和 5855 mAh cm −3) 和低电化学电位 (−0.76 V vs. 标准氢电极)、丰富的锌资源,以及水系电解质固有的安全性和高离子电导率 (~ 1 S cm −1 vs. 1-10 mS cm −1 有机电解质) [10-16]。然而,锌金属负极存在析氢反应(HER)、腐蚀、钝化、枝晶生长等严重问题,导致可逆性差、循环寿命不稳定,甚至发生短路故障[17–23]。这些问题严重阻碍了AZMBs的实际应用。为了克服上述问题,人们提出了各种针对锌金属负极的稳定策略,包括表面改性、结构优化、电解质工程和隔膜设计[24–31]。然而,由于使用了远远过量的锌,这些研究尚未实现较高的锌利用率[32]。为了补偿Zn的不可逆损失,提高充放电过程的循环稳定性,研究人员通常构建Zn过量(Zn箔厚度≥100μm)、面积容量低(1-5mAh cm−2)的锌金属负极,导致负极与正极的容量比高(N/P>50),放电深度(DOD)较低(<10%)[33]。放电深度(DOD)是参与电极反应的容量占锌金属负极总容量的百分比:
第四年 – 秋季 (15) LIBS 320 或 321 A、B、C 或 D:核心研讨会 (3) KIN 400:小学体育 (3) EDMS 419:社会公正课堂的身份与机构 (3) 表演艺术 UD GE C 课程:音乐、戏剧或舞蹈调查或历史 (3) 选修课、辅修课或集中课程 (3)