锂金属与水反应会产生氢气 (H 2 ) 以及氧化锂 (Li 2 O) 和氢氧化锂 (LiOH) 粉尘。亚硫酰氯在 140°C 以上热分解时会产生氯气 (Cl 2 )、二氧化硫 (SO 2 ) 和二氯化二硫 (S 2 Cl 2 )。亚硫酰氯在室温下与水反应会产生盐酸 (HCl) 和二氧化硫 (SO 2 )。四氯铝酸锂 (LiAlCl 4 ) 与水反应会产生盐酸 (HCl) 烟雾、氧化锂 (Li 2 O)、氢氧化锂 (LiOH) 和氢氧化铝 (Al(OH) 3 ) 粉尘。
10.6。危险分解产物 - 氢(H 2)以及氧化锂(Li 2 O)和氢氧化锂(LiOH)粉尘是在锂金属与水反应的情况下产生的。氯(Cl 2),二氧化硫(SO 2)和二硫化二氯化物(S 2 Cl 2)在140 thionyl氯的热分解中,在140 r-盐酸(HCl)和二氧化硫二氧化硫(SO 2)的情况下,在硫代酸(So 2)的情况下产生硫代酸(So 2)的含量(硫酸)酸(SO 2),含有硫代酸(SO 2)。如果在四氯化铝(Lialcl 4)与水反应的情况下,产生烟雾,氧化锂(Li 2 O),氢氧化锂(LiOH)和氢氧化铝(Al(OH)3)。
Li Metal 23的不稳定性和对阳极保护层的需求。 24在这些区域已经取得了成功,但是,大多数对空气电池的研究都涉及使用纯O 2气体作为正电极的原料,并且仅探索了仅使用低容量的系统(<1 mA H cm-2)。 已重新投入了一些更实用的细胞结构的例子,尽管没有气体处理系统。 25 Kubo和同事描述了一个多层袋细胞,该单元可以在0.5 mA H CM-2,26处存储150 W H Kg细胞-1,而Zhao和同事报告了一个双层小袋池,其容量> 750 w H Kg Cell-1。 27最近,李和同事们展示了一个1200 w h kg的细胞-1折叠式小袋细胞conconguration,大多数电池技术可能都大大超过了特定的能量密度。 28,29个实用的“现实世界” LI - 空气电池将在空气中运行,将电解质暴露于H 2 O和CO 2,它们可以与Li 2 O 2反应,分别产生Lioh和Li 2 CO 3。 30 lioH会导致电解质降解,并且两个盐都具有高氧化电位,这将显着限制细胞的库仑效率。 31,32由于与大气气体对LI - 空气电池运行相关的挑战,“现实世界”开放设备将结合气体处理系统来“擦洗” H 2 O和CO 2的空气33,并且假定两者都需要<10 ppm的浓度。 34Li Metal 23的不稳定性和对阳极保护层的需求。24在这些区域已经取得了成功,但是,大多数对空气电池的研究都涉及使用纯O 2气体作为正电极的原料,并且仅探索了仅使用低容量的系统(<1 mA H cm-2)。已重新投入了一些更实用的细胞结构的例子,尽管没有气体处理系统。25 Kubo和同事描述了一个多层袋细胞,该单元可以在0.5 mA H CM-2,26处存储150 W H Kg细胞-1,而Zhao和同事报告了一个双层小袋池,其容量> 750 w H Kg Cell-1。27最近,李和同事们展示了一个1200 w h kg的细胞-1折叠式小袋细胞conconguration,大多数电池技术可能都大大超过了特定的能量密度。28,29个实用的“现实世界” LI - 空气电池将在空气中运行,将电解质暴露于H 2 O和CO 2,它们可以与Li 2 O 2反应,分别产生Lioh和Li 2 CO 3。 30 lioH会导致电解质降解,并且两个盐都具有高氧化电位,这将显着限制细胞的库仑效率。 31,32由于与大气气体对LI - 空气电池运行相关的挑战,“现实世界”开放设备将结合气体处理系统来“擦洗” H 2 O和CO 2的空气33,并且假定两者都需要<10 ppm的浓度。 3428,29个实用的“现实世界” LI - 空气电池将在空气中运行,将电解质暴露于H 2 O和CO 2,它们可以与Li 2 O 2反应,分别产生Lioh和Li 2 CO 3。30 lioH会导致电解质降解,并且两个盐都具有高氧化电位,这将显着限制细胞的库仑效率。31,32由于与大气气体对LI - 空气电池运行相关的挑战,“现实世界”开放设备将结合气体处理系统来“擦洗” H 2 O和CO 2的空气33,并且假定两者都需要<10 ppm的浓度。34
溶液中:[Fe(CN) 6 ] 3- + ½S 2 2- = [Fe(CN) 6 ] 4- + S ↓ (7) 溶液中:[Fe(CN) 6 ] 3- + ½ S 2- = [Fe(CN) 6 ] 4- + ½ S ↓ (8) 尽管如此,即使是离子选择性膜,其能够维持的电荷选择性也存在唐南排除极限。例如,当量为 1200 g/mol H + 的 Nafion 在与浓度超过 1 M 的 HCl 溶液接触时,氯离子会明显渗透 [20]。对于其他阴离子,Nafion 及其类似物通常也能保持电荷选择性,直至约 1 M [21-25],并且它们可以减缓溶液中的寄生反应(即不会产生通过电池的电流)(6)以及其他潜在的副反应。然而,在电活性阴离子浓度较高时,交叉现象变得明显。在硫化物-铁氰化物氧化还原电池 (4) 和 (5) 的具体示例中,总溶解硫浓度为 2.0 M(在 0.1 M LiOH 中),总溶解铁氰化物络合物浓度为 0.3 M(也在 0.1 M LiOH 中),硫沉积物形成在 Nafion 117 膜的正极(铁氰化物)侧 [10]。
锂离子电池对其制造中使用的材料具有严格的纯度要求。杂质会导致充电性能差,包括车辆的操作范围减少,更频繁的充电,电池从较冷的温度开始以及在某些极端情况下,电池着火了。当前锂转换实践的一个主要问题是生产高质量锂产品的可靠操作。氢氧化锂和碳酸锂的表2中提供了电池等级纯度规格。对于碳酸锂,最低纯度需求为99.5 wt%,氢氧化锂单盐酸锂(lioh-H2O)的氢氧化物(LIOH-H2O)为56.5 wt%的氢氧化锂(LiOH)以57.0 wt%的理论最大纯度为57.0 wt%。
目前,已经设计了多种储热技术,以匹配系统。1,2这些技术通常可分为三大类:显热储热、潜热储热和热化学储热。7-11但前两种技术更容易损失守恒的热能,因此不适合长期储热。12在这些技术中,热化学储热利用可逆化学反应释放和储存热量,由于其良好的储热密度,热能利用效率最高。13因此,可以研究大量材料用于广泛工作温度范围内的热化学储热。12-19Kubota等人9,20将多孔碳和吸湿材料与氢氧化锂(LiOH)制成低温储能材料,储热性能明显提高。这项研究证明
缩写/术语说明修复描述电池以恒定电流的定义放电和随后的充电。这可用于消除或减少电池系统的运行能力损失。Float向累加器充电以补偿其自我释放,目的是使累加器充满电。提升充电表明累加器的电压增加了电压和定义的电流,以便尽快为累加器充电。电解质导轨|功率FNC-HT电池是NICD电池,并含有氢氧化氮杂(NaOH)作为电解质,并添加了氢氧化锂(LiOH)。正确处理时,铁路|电源FNC-HT电池是安全的。与电解质接触被排除在外。格式导轨|功率FNC-HT单元格的传递方式不同:•R2(格式2)•R3(格式3)
在这项工作中,我们评估了 454 种盐水合物和 1073 种独特的水合反应,以寻找适合家用储热的材料。根据盐和反应的稀缺性、毒性、(化学)稳定性和能量密度(> 1 GJ/m 3)以及与 3 种用例场景的一致性对其进行了评估。这些场景基于空间供暖(T > 30 ◦ C)和热水(T > 55 ◦ C)通过排放提供,以及建筑环境中可用于充电的热源(T < 160 ◦ C)。在所有评估的材料中,只有 8 种盐和 9 种反应(K 2 CO 3 0 – 1.5、LiCl 0 – 1、NaI 0 – 2、NaCH 3 COO 0 – 3、(NH 4 ) 2 Zn(SO 4 ) 2 0 – 6、SrBr 2 1 – 6、CaC 2 O 4 0 – 1、SrCl 2 0 – 1 和 0 – 2)满足所有标准。假设找到合适的稳定方法,则需要另外 4 种盐和 13 种反应(CaBr 2 6-0、CaCl 2 6-0、6-1、6-2、4-0、4-1、4-2、LiBr 2-0、2-1、2-0、LiCl 2-0、2-1、ZnBr 2 2-0)。从这些选择中,只有 2 种盐/反应(NaI 和 (NH 4 ) 2 Zn(SO 4 ) 2 )尚未在文献中得到广泛研究。此外,许多经过充分研究的盐水合物,如 MgSO 4 和 LiOH,均未通过我们的筛选。这项工作强调了适合家庭应用的材料的稀缺性,以及扩大未来评估范围的必要性。
防止阳极和阴极接触,同时允许离子通过。5,8 氢氧化锂 (LiOH) 和碳酸盐 (Li 2 CO 3 ) 在锂离子电池阴极材料的生产中起着至关重要的作用。虽然两种锂化合物都可以使用,但氢氧化物形式具有一些优势。氢氧化锂是长续航里程汽车电池中使用的高镍阴极材料的首选,因为它具有更高的填充密度、更好的结晶度、结构纯度,并且可以在较低的合成温度下使用。9 氢氧化锂可以从盐水和矿石中提取。10 从锂辉石等矿石中提取需要多个步骤,首先要将原料矿物粉碎和研磨。由于 α-锂辉石具有非常强的化学抗性,因此必须通过在 1100°C 的回转窑中加热将其转化为热力学上不太稳定的 β-锂辉石。该步骤之后,通常会在 250°C 下用浓硫酸 (H 2 SO 4 ) 焙烧 b-锂辉石,生成硫酸锂 (Li 2 SO 4 )。10 根据所用的工业工艺,可能需要进一步的步骤,这些步骤可能在细节上有所不同,但通常包括浸出先前的
如何快速可靠地克服挑战,以促进锂基盐在潜热存储技术中的开发?原位实时显微镜用于通过微观机制了解材料的理论和实验宏观性质之间的差异。尽管无机锂盐对空气/湿度敏感,且普遍认为 LiOH 在干燥环境或真空下会分解,所以不能用于在显微镜室内合成新材料,但仍证明了该方法在无机锂盐上的可行性。以 Li 4 Br(OH) 3(一种不常见的、有前途的相变材料)为例,调查了与理论能量密度 434 kWh/m 3 约 30% 的偏差来源。起始材料的水合/脱水是主要参数之一,应用温度协议,在形貌和性能方面引起与目标材料不同的偏差。如果不考虑这一标准,则可能会对设备在使用过程中的存储容量造成灾难性的影响。本研究重点介绍了避免这些缺陷的解决方案。尽管操作条件不同,但微观尺度上的结果与宏观尺度上的结果也得到了证明© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。