在知识图上回答复杂的逻辑查询(kgs)是一项基本而又具有挑战性的任务。最近,查询代表是复杂逻辑推理的主流方法,使目标答案和查询在嵌入空间中更加近。但是,仍然存在两个限制。首先,先验方法将查询模型为固定向量,但忽略了KGS上关系的不确定性。实际上,不同的关系可能包含不同的语义分布。第二,传统表示框架无法捕获查询和答案的联合分布,可以通过有可能产生更连贯答案的生成模型来学习。为了减轻这些局限性,我们提出了一个名为diffclr的新型生成模型,该模型利用了差异模型的复杂逻辑推理来近似查询分布。具体来说,我们首先设计了一个查询转换,通过动态构造上下文子图将逻辑查询转换为输入序列。然后,我们将它们集成到扩散模型中以执行多步生成过程,并进一步设计了结构增强的自我专业,以范围内构成了KGS中体现的结构特征。两个基准数据集的实验结果显示了我们的模型有效地执行最新方法,尤其是在具有显着改进的多跳链查询中。
摘要 我们扩展了 Deutsch 使用四个正交状态确定逻辑函数映射的算法。利用此算法,我们提出使用十六个正交状态对逻辑函数变量值的所有组合进行并行计算。作为我们算法的一个应用,我们演示了二进制系统中两种典型的算术计算。我们研究了通过量子门控计算操作全加器/半加器的效率。两种典型的算术计算是(1 + 1)和(2 + 3)。典型的算术计算(2 + 3)比其经典装置更快,当我们引入全加器操作时,经典装置需要 4 3 = 64 个步骤。另一个典型的算术计算(1 + 1)比其经典装置更快,当我们仅引入半加器操作时,经典装置需要 4 2 = 16 个步骤。
摘要:内存及其数据通信在决定处理器的性能中起着至关重要的作用。为了获得高性能计算机,内存访问必须同样更快。在本文中,使用Set/Reset的双端口存储器是使用量子点蜂窝自动机(QCA)中的多数选民设计的。双端口存储器由基本功能块组成,例如2至4解码器,控制逻辑块(CLB),地址检查器块(ACB),内存单元格(MC),数据路由器块和输入/输出块。这些功能单位是使用三输入多数选民构建的。QCA是纳米级数字组件设计的最新技术之一。在qcadesigner 2.0.3中已经模拟和验证了双端口存储器的功能。一种称为逻辑交叉的新型跨界方法用于改善拟议设计的面积。逻辑交叉在适当的时钟区域分配的支持下进行数据传输。基于逻辑交叉的QCA布局是根据细胞计数和数量的数量来优化的。据观察,分别是29.81%,18.27%,8.32%,11.57%和3.69%是解码器,ACB,CLB,数据路由器和存储单元中细胞数量的改善百分比。另外,在解码器,ACB,CLB,数据路由器和存储器单元的区域中,可实现25.71%,16.83%,8.62%,4.74%和3.73%的改进。除了提出的使用逻辑交叉的提议的双端口存储器外,该区域的改善增长了8.26%;由于其构建所需的细胞数量减少了8.65%,因此这可能是可能的。此外,使用RCViewer+工具获得了RAM的量子电路。量子成本,恒定输入,门的数量,垃圾输出和总成本分别为285、67、57、50和516。
深度学习与自动定理证明相结合的最新进展主要集中在将逻辑公式表示为深度学习系统的输入。特别是,人们对采用结构感知神经方法来处理逻辑表达式的底层图形表示的兴趣日益浓厚。虽然基于图形的方法比字符和标记级方法更有效,但它们通常会做出表示权衡,从而限制其捕获输入的关键结构属性的能力。在这项工作中,我们提出了一种嵌入逻辑公式的新方法,旨在克服先前方法的表示限制。我们的架构适用于不同表达能力的逻辑;例如,一阶和高阶逻辑。我们在两个标准数据集上评估了我们的方法,并表明所提出的架构在前提选择和证明步骤分类方面都实现了最先进的性能。
通过网络分析可以研究细胞机制的动态。最简单但最流行的建模策略之一涉及基于逻辑的模型。然而,与节点的线性增加相比,这些模型仍然面临模拟复杂性的指数增长。我们将这种建模方法转移到量子计算中,并使用该领域即将推出的技术来模拟生成的网络。在量子计算中利用逻辑建模有很多好处,包括复杂性降低和系统生物学任务的量子算法。为了展示我们的方法对系统生物学任务的适用性,我们实施了一个哺乳动物皮层发育模型。在这里,我们应用了一种量子算法来估计模型达到特定稳定条件并进一步恢复动态的趋势。本文介绍了两个实际量子处理单元和一个噪声模拟器的结果,并讨论了当前的技术挑战。
大型语言模型 (LLM) 可用作生物和化学信息库,以生成药理学先导化合物。然而,要使 LLM 专注于特定的药物靶点,通常需要使用逐步更精细的提示进行实验。因此,结果不仅取决于对靶点的了解,还取决于对提示工程的了解。在本文中,我们将提示分为可以以标准逻辑形式编写的领域约束和简单的基于文本的查询。我们研究是否可以引导 LLM,不是通过手动优化提示,而是通过自动优化逻辑组件,保持查询不变。我们描述了一个迭代过程 LMLF(“具有逻辑反馈的语言模型”),其中使用逻辑泛化概念逐步优化约束。在任何迭代中,都会根据约束验证新生成的实例,为下一次迭代对约束的优化提供“逻辑反馈”。我们使用两个众所周知的靶点(Janus 激酶 2 和多巴胺受体 D2 的抑制)和两个不同的 LLM(GPT-3 和 PaLM)来评估 LMLF。我们表明,从相同的逻辑约束和查询文本开始,LMLF 可以引导两个 LLM 生成潜在线索。我们发现:(a) LMLF 生成的分子的结合亲和力比现有基线的结合亲和力更偏向更高的结合亲和力;(b) LMLF 生成的分子比没有逻辑反馈的分子更偏向更高的结合亲和力;(c) 计算化学家的评估表明 LMLF 生成的化合物可能是新型抑制剂。这些发现表明,具有逻辑反馈的 LLM 可能提供一种生成新线索的机制,而无需领域专家获得复杂的快速工程技能。
1. 引言 近年来,脑信号研究已广泛应用于经济学和管理学等各个领域,而以前它仅用于工程学和医学领域 [1,2]。了解脑电图 (EEG) 分析和分类的方法使研究人员能够开展更多实验,以最佳地利用这些信号 [3,4]。当一个人执行一项活动时,他或她会产生信号,而收集这些信号将有利于增强任何过程。通过收集,我们的意思是研究信号模式,该模式随后可用作评估其他人的参考,例如,机器人手部运动 [5,6] 和情绪识别 [7,8]。决策是每一项生活活动中的重要过程,无论是个人还是机构。在商业中,决策在每个步骤中都至关重要,包括计划、人员配备、组织、协调和后续行动 [9,10]。决策可以分为
实时系统容易受到诸如故障和攻击的对抗性因素的影响,从而导致严重的后果。本文提出了一个最佳检查点方案,以增强实时系统中的故障弹性,从而解决了逻辑一致性和定时正确性。首先,我们根据其依赖项将消息传递过程分配到有向的无环图(DAG)中,从而确保检查点逻辑一致性。然后,我们识别DAG的临界路径,代表最长的顺序路径,并沿此路径分析最佳检查点策略,以最大程度地减少整体执行时间,包括检查点开销。故障检测后,系统将回到最近的有效检查点以进行恢复。我们的算法得出了最佳检查点计数和间隔,我们通过大量的模拟和案例研究评估其性能。结果表明,与模拟和案例研究中的无检查点系统相比,执行时间减少了99.97%和67.86%。此外,我们提出的策略优于先前的工作和基线方法,对于小规模任务,截止日期的成就率提高了31.41%和2.92%,大规模任务的截止日期率和78.53%和4.15%。
在本文中,我们提出了一个模块化系统,用于代表和推理,并具有自动驾驶汽车交通规则的法律方面。我们专注于英国高速公路法规(HC)的子集。随着人类驾驶员和自动化车辆(AV)将在道路上进行交互,尤其是在城市环境中,我们声称应该存在一个可访问,统一的高级计算模型,并适用于两个用户。自动驾驶汽车引入了责任转变,不应带来缺点或增加人类驾驶员的负担。我们开发了模型的“硅中”系统。提出的系统由三个主要组成部分构建:使用逻辑英语编码规则的自然语言接口;序言中规则的内部表示;以及基于Netlogo的基于多机构的仿真环境。三个组件相互作用:逻辑英语被转化为序言(以及一些支持代码); Prolog和Netlogo接口通过谓词。这样的模块化方法使不同的组件能够在整个系统中承担不同的“负担”。它还允许交换模块。给定的NetLogo,我们可以可视化建模规则的效果,并使用简单的动态运行方案验证系统。指定的代理商监视车辆的行为,以确保合规性和记录可能发生的潜在违规行为。然后,验证者利用有关潜在违规行为的信息,以确定违规行为是否应处以惩罚,在异常和案件之间进行区分。
最近提出了一种容错方法来准备 Q 1 码的逻辑码态,即编码一个量子比特的量子极性码。其中的容错性由错误检测装置保证,如果在准备过程中检测到错误,则完全丢弃准备。由于错误检测,准备是概率性的,其成功率(称为准备率)随代码长度的增加而迅速下降,从而阻止了大代码长度的代码状态的准备。在本文中,为了提高准备率,我们考虑工厂准备 Q 1 码态,其中尝试并行准备多个 Q 1 码态副本。使用额外的调度步骤,我们可以避免每次检测到错误时完全丢弃准备,从而反过来提高准备率。我们进一步提供了一种理论方法来估计使用工厂准备准备的 Q 1 码的准备和逻辑错误率,该方法被证明与基于蒙特卡洛模拟的数值结果紧密相关。因此,我们的理论方法可用于为大代码长度提供估计,而蒙特卡罗模拟实际上并不可行。对于电路级去极化噪声模型,我们的数值结果表明准备率显著增加,特别是对于较大的代码长度 N 。例如,对于 N = 256 ,对于实际有趣的物理错误率 p = 10 − 3 ,它从 0.02% 增加到 27%。值得注意的是,N = 256 的 Q 1 码在 p = 10 − 3 和 p = 3 × 10 − 4 时分别实现了大约 10 − 11 和 10 − 15 的逻辑错误率。与具有相似代码长度和最小距离的表面码相比,这相当于提高了大约三个数量级,从而表明所提出的方案用于大规模容错量子计算的前景。