Niels Quack 副教授 航空机械与机电一体化工程学院微系统与纳米系统 悉尼大学 电子邮件:niels.quack@sydney.edu.au 摘要:光子集成电路利用单个芯片上大量光学元件的紧密集成。随着技术的成熟,大规模集成有望释放可编程集成光学、光子加速器、神经形态计算或量子光子集成电路等新兴概念的潜力。这种多功能光子集成电路从可扩展的单个相位和幅度控制单元数量中受益匪浅,此外还有用于光谱滤波、光电检测、高速调制、低损耗光学路由和耦合以及电气路由和接口的高性能组件。在光子集成电路的材料平台中,硅脱颖而出,因为它可以利用微电子行业的优化生态系统和高性能。在光子信号控制的物理效应中,纳米力学脱颖而出,因为它具有低光损耗、低功耗、紧凑的体积和同时在宽光谱范围内运行的特点。然而,虽然微机电系统 (MEMS) 通常用于消费电子产品,但它们在光子学中的大规模集成迄今为止仍被证明具有挑战性。在本次演讲中,我将概述在将硅光子 MEMS 扩展到大型电路方面取得的最新成就。我将总结基于 IMEC 先进的标准化硅光子 iSiPP50G 平台的 MEMS 集成,该平台是我们在欧洲 H2020 项目 morphic 中开发的。我们的晶圆级技术平台包括通过后处理实现的 MEMS 发布、通过晶圆键合实现的晶圆级密封以及通过倒装芯片键合和光纤连接实现的电气和光学接口。我将介绍使用 MEMS 可调环形谐振器的 MEMS 可调耦合器、开关、移相器和光谱控制的实验结果,并概述我们如何通过集成纳米机电压电执行器进一步扩展可编程光子学。我们的设备工作时驱动电压通常低于 30V,占用面积小于 100 x 100 μm2,插入损耗低至 < 0.3 dB,每台设备的电耗低至 1 nW,响应时间为 μs。我们在标准硅光子学中同时进行了低损耗、紧凑占用面积、宽带响应、低功耗和快速 MEMS 的里程碑式实验演示,使我们的技术特别适合需要超大规模光子集成的新兴应用,例如光子学计算或可编程光子学。
学术行为和支持系统声明 学术行为 剽窃——将他人的观点当作自己的观点,无论是逐字逐句还是用自己的话重述——都是严重的学术违规行为,后果严重。请熟悉 SCampus 第 11 节“违反大学标准的行为”中关于剽窃的讨论 https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/。其他形式的学术不诚实行为同样不可接受。有关 SCampus 和大学关于科学不端行为的政策的更多信息,请参阅 http://policy.usc.edu/scientific-misconduct/。大学不容忍歧视、性侵犯和骚扰。我们鼓励您向公平与多元化办公室 http://equity.usc.edu/ 或公共安全部 http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us 报告任何事件。这对于整个 USC 社区的安全非常重要。大学社区的其他成员(例如朋友、同学、顾问或教职员工)可以帮助发起报告,也可以代表其他人发起报告。妇女和男子中心 http://www.usc.edu/student-affairs/cwm/ 提供 24/7 保密支持,性侵犯资源中心网页 sarc@usc.edu 介绍了报告选项和其他资源。支持系统 USC 的许多学院为需要学术写作帮助的学生提供支持。请咨询您的顾问或项目工作人员以了解更多信息。母语不是英语的学生应咨询美国语言学院 http://dornsife.usc.edu/ali,该学院专门为国际研究生提供课程和讲习班。残疾人服务和项目办公室 http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html 为残疾学生提供认证并帮助安排相关住宿。如果官方宣布的紧急情况导致无法前往校园,南加州大学紧急信息 http://emergency.usc.edu/ 将提供安全和其他更新,包括如何通过黑板、电话会议和其他技术继续教学。
7 有限元法简介 145 7.1 简介 145 7.2 变分原理 147 7.2.1 功和补充功 147 7.2.2 应变能、补充应变能和动能 148 7.2.3 加权残值技术 149 7.3 能量泛函和变分算子 151 7.3.1 变分符号 153 7.4 控制微分方程的弱形式 153 7.5 一些基本能量定理 154 7.5.1 虚功的概念 154 7.5.2 虚功原理(PVW) 154 7.5.3 最小势能原理(PMPE) 155 7.5.4 Rayleigh-Ritz 方法 156 7.5.5 Hamilton 原理(HP) 156 7.6 有限元法 158 7.6.1 形函数 159 7.6.2 有限元方程的推导 162 7.6.3 等参公式和数值积分 164 7.6.4 数值积分和高斯求积 167 7.6.5 质量和阻尼矩阵公式 168 7.7 有限元法中的计算方面 171 7.7.1 影响 FE 解速度的因素 172 7.7.2 静态分析中的方程解 173 7.7.3 动态分析中的方程解 174 7.8 超收敛有限元公式 178 7.8.1 超收敛深杆有限元 179 7.9 谱有限元公式 182 参考文献 184
1.简介 本报告涉及微机电系统(MEMS)这一新兴领域。MEMS 是一种工艺技术,用于创建结合了机械和电气元件的微型集成设备或系统。它们采用集成电路 (IC) 批处理技术制造,尺寸范围从几微米到几毫米。这些设备(或系统)能够在微观尺度上进行感应、控制和驱动,并在宏观尺度上产生影响。MEMS 的跨学科性质利用了来自广泛而多样的技术领域的设计、工程和制造专业知识,包括集成电路制造技术、机械工程、材料科学、电气工程、化学和化学工程,以及流体工程、光学、仪器仪表和封装。MEMS 的复杂性还体现在包含 MEMS 设备的广泛市场和应用范围内。MEMS 可应用于汽车、医疗、电子、通信和国防等各个领域。当前的 MEMS 设备包括安全气囊传感器的加速度计、喷墨打印机头、计算机磁盘驱动器读/写头、投影显示芯片、血压传感器、光开关、微型阀、生物传感器以及许多其他以高商业量生产和出货的产品。MEMS 被认为是 21 世纪最有前途的技术之一,它有可能通过将硅基微电子技术与微加工技术相结合,彻底改变工业和消费产品。它的技术和基于微系统的设备有可能极大地影响我们所有人的生活和生活方式。如果说半导体微加工是第一次微制造革命,那么 MEMS 就是第二次革命。本报告介绍了 MEMS 领域,分为四个主要部分。第一部分向读者介绍了 MEMS、其定义、历史、当前和潜在应用,以及 MEMS 市场现状和小型化问题。第二部分介绍了 MEMS 的基本制造方法,包括光刻、体微加工、表面微加工和高纵横比微加工;还介绍了 MEMS 设备的组装、系统集成和封装。最后一部分阐述了 MEMS 行业在实现 MEMS 商业化和成功方面面临的挑战。2.第三部分回顾了 MEMS 传感器和执行器的范围、可以用 MEMS 设备感知或作用的现象,以及基本感知和执行机制的简要说明。微机电系统 (MEMS)
摘要。在 21 世纪,无论有望推动生物传感器发展的技术如何,生物传感器都受到了前所未有的广泛关注。随着最近 COVID-19 疫情的爆发,人们对恢复全球健康和福祉的关注和努力正在以前所未有的速度增长。开发精确、快速、即时护理、可靠、易于处理/复制且低成本的诊断工具的需求不断上升。生物传感器是手持式医疗包、工具、产品和/或仪器的主要元素。它们具有非常广泛的应用范围,例如附近的环境检查、检测疾病的发生、食品质量、药物发现、药物剂量控制等等。本章解释了纳米/微机电系统 (N/MEMS) 如何使技术朝着可持续、可扩展、超小型化、易于使用、节能和集成的生物/化学传感系统发展。本研究深入了解了 N/MEMS 传感器和集成系统在检测和测量生物和/或化学分析物浓度方面的基础知识、最新进展和潜在最终应用。本文解释了传导原理、材料、包括读出技术在内的高效设计以及传感器性能。随后讨论了 N/MEMS 生物传感器如何继续发展。本文还讨论了挑战和可能的机会。
《MEMS 和微结构在航空航天应用中》是从程序需求的角度编写的。MEMS 是一个跨学科领域,需要电子、微机械、加工、物理、流体学、封装和材料方面的知识,这些只是其中的一些技能。因此,太空任务需要更广泛的学科。本书就是为这个广泛的群体,特别是系统工程师编写的。该材料是为系统工程师、飞行保证经理、项目负责人、技术专家、项目管理、子系统负责人和其他人员(包括寻找新仪器功能的科学家)设计的,可作为 MEMS 在航空航天应用中的实用指南。本书的目的是为读者提供足够的背景和具体信息,以设想和支持 MEMS 在未来飞行任务中的应用。为了培育在微型航天器(甚至是航天器)中使用 MEMS 的愿景,我们尝试概述迄今为止 MEMS 在太空中的一些应用,以及迄今为止为支持太空任务而开发的不同应用。这些应用中的大多数都处于低技术准备水平,预计下一步是开发适合太空的硬件。但是,该领域仍然缺乏一个遗产数据库来征集下一代 MEMS 演示的规定性要求。(有些人可能会认为这是一种好处。)本书的第二个目标是为最终用户提供指南和材料,以便他们利用这些指南和材料来集成和鉴定 MEMS 设备和仪器,以用于未来的太空任务。
近年来,人们对用于入耳式应用的 MEMS 扬声器的兴趣日益浓厚,在声压级、失真和外形尺寸方面取得了令人鼓舞的成果 [1–3]。基于薄膜 PZT 的 MEMS 扬声器有望取代目前用于小型可穿戴设备的笨重扬声器。减小扬声器尺寸并使其适应微制造工艺可以进一步降低功耗并将其集成到更小的设备中,如智能手表和真正的无线耳机。在本文中,我们介绍了 [4] 中所示的扬声器的测量结果,并将结果与 [5] 中提出的集总参数模型和有限元模型进行的仿真结果进行了比较。在使用集总参数和有限元模型进行的仿真中,扬声器产生的声压级超过 120 dB SPL,频率低至 100 Hz。扬声器的响应使用 GRAS RA0045 耳塞耦合器测量,符合国际 60318-4 (IEC) 标准。扬声器的后腔未加载,装置放置在消声 GRAS 室内。设计并 3D 打印了一个适配器,以使扬声器的移动板适应耳塞耦合器的输入。还评估了由于扬声器中使用的薄膜压电材料的复杂非线性行为而导致的总谐波失真 (THD)。实验结果与实际结果之间的差异
图 3.(左)我们打算将连接到电力线导体上的传感器模块封装用作传感器电容拾音器的一部分,以最大限度地提高其电容,从而提高灵敏度。(右)电压指的是支持固态电容传感器或 MEMS 传感设备的导体的电压。(电压值从图 2 中的 FEM 模型中获得。)请注意,在距离支撑导体相对较小的地方存在较大的电位差,并且电位差在靠近支撑导体的地方几乎呈线性变化。
7 有限元法简介 145 7.1 简介 145 7.2 变分原理 147 7.2.1 功和补充功 147 7.2.2 应变能、补充应变能和动能 148 7.2.3 加权残值技术 149 7.3 能量泛函和变分算子 151 7.3.1 变分符号 153 7.4 控制微分方程的弱形式 153 7.5 一些基本能量定理 154 7.5.1 虚功的概念 154 7.5.2 虚功原理(PVW) 154 7.5.3 最小势能原理(PMPE) 155 7.5.4 Rayleigh-Ritz 方法 156 7.5.5 Hamilton 原理(HP) 156 7.6 有限元法 158 7.6.1形函数 159 7.6.2 有限元方程的推导 162 7.6.3 等参公式和数值积分 164 7.6.4 数值积分和高斯求积 167 7.6.5 质量和阻尼矩阵公式 168 7.7 有限元法中的计算方面 171 7.7.1 影响 FE 解速度的因素 172 7.7.2 静态分析中的方程解 173 7.7.3 动态分析中的方程解 174 7.8 超收敛有限元公式 178 7.8.1 超收敛深杆有限元 179 7.9 谱有限元公式 182 参考文献 184