抽象的线粒体选择性荧光探针(例如mitotracker)通常用于各种植物中的线粒体成像。尽管据报道某些探针会诱导动物细胞中线粒体功能障碍,但对植物细胞的影响仍有待确定。在本研究中,我们使用定量方法来分析线粒体运动,速度频率和速度角变化,基于拟南芥中叶叶叶质细胞中线粒体的轨迹分析,表达了线粒体 - 位于线粒体 - 平钙化的荧光蛋白。使用定量方法,我们评估了Mitotracker Red(FM和CMXROS)是否诱导A. thaliana的线粒体功能障碍。尽管荧光探针均染色良好,但CMXros探针而非FM探测器对低浓度(10 nm)的线粒体运动产生了严重影响,表明thaliana的线粒体诱导的线粒体功能障碍。这些结果表明,我们基于线粒体运动的定量方法可用于确定植物中线粒体选择性荧光探针的适当浓度。
封面图片。上图:Thy1-GFP 标记的透明化鼠脑(CLARITY)。采用 ZEISS Lightsheet Z.1 采集,在 arivis Vision4D 中处理。使用 5 倍物镜成像,使用来自两侧的 6x7 瓷砖。插图:皮质区域的数字变焦,显示可以识别和分析单个神经元。图片由 Douglas S Richardson 拍摄;经 ZEISS 许可复制。中间左侧:有丝分裂中的 HeLa 细胞的 3D 渲染。来自 300 个时间点图像系列的快照。染色体标记为绿色(mCherry-H2B),线粒体标记为黄色(mitotracker - 深红色),内质网标记为洋红色(mEmerald-calnexin)。细胞器结构清晰可见。由 Wesley Legant 和 Eric Betzig 使用晶格光片显微镜采集。图片来自 Chen 等人Science 2014;346:1257998。经美国科学促进会许可转载。中间右侧:海洋甲壳类动物 Parhyale hawaiensis 六天大胚胎的 3D 渲染体积数据集。七天延时拍摄的一个时间点。使用 ZEISS Lightsheet Z.1 采集,数据在斐济处理和融合。图像由 Tassos Pavlopoulos 拍摄。底部:斑马鱼视网膜的发育过程,在出生后 1.5 天至 3.5 天内,每 12 小时在光片显微镜下拍摄一次。标签:视网膜神经节细胞与 Ath5:RFP(洋红色),无长突细胞和水平细胞与 Ptf1a:YFP(黄色),光感受器和双极细胞与 Crx:CFP(青色)。图片由德累斯顿马克斯普朗克分子细胞生物学和遗传学研究所(MPI-CBG)的 Norden 实验室提供(根据知识共享署名 - 相同方式共享 4.0 国际许可证授权 https://creativecommons.org/licenses/by-sa/4.0/deed.en)。
为了增加知识,必须深入研究大型动物模型中的基因编辑,以便将来将其应用于转化医学和食品生产。线粒体转录因子 A(TFAM)是 HMGB 亚家族的成员,可与 mtDNA 启动子结合。该基因维持 mtDNA,并且对于 mtDNA 转录的起始至关重要。最近,我们通过 CRISPR/Cas 9 技术破坏牛成纤维细胞中的 TFAM 基因,生成了一种新的细胞系。我们通过生成杂合突变克隆证明了 CRISPR/Cas9 设计是有效的。在这种情况下,一旦该基因调节 mtDNA 复制特异性,该研究旨在确定后编辑细胞是否能够在体外维持,并评估它们在培养中连续传代后是否会出现 mtDNA 拷贝数和线粒体膜电位的变化。编辑后的细胞在培养中扩增,我们进行了生长曲线、倍增时间、细胞活力、线粒体 DNA 拷贝数和线粒体膜电位测定。编辑过程并没有使细胞培养变得不可行,尽管与对照组相比,细胞生长率和活力有所下降,因为我们观察到在补充有尿苷和丙酮酸的培养基中培养时,细胞生长良好。它们还表现出典型的成纤维细胞样外观。用于确定 mtDNA 拷贝数的 RT-qPCR 表明,与不同细胞代次中未编辑的克隆(对照)相比,编辑后的克隆有所减少。用 Mitotracker Green 和 red 进行细胞染色表明,与未编辑的细胞相比,编辑后的细胞中的红色荧光有所减少。因此,通过表征,我们证明了 TFAM 基因对于线粒体的维持至关重要,因为它会干扰不同细胞传代中线粒体 DNA 拷贝数和膜电位的稳定性,从而证实了杂合编辑的细胞中线粒体活性的降低。
为了增加知识,必须深入研究大型动物模型中的基因编辑,以便将来将其应用于转化医学和食品生产。线粒体转录因子 A(TFAM)是 HMGB 亚家族的成员,可与 mtDNA 启动子结合。该基因维持 mtDNA,并且对于 mtDNA 转录的起始至关重要。最近,我们通过 CRISPR/Cas 9 技术破坏牛成纤维细胞中的 TFAM 基因,生成了一种新的细胞系。我们通过生成杂合突变克隆证明了 CRISPR/Cas9 设计是有效的。在这种情况下,一旦该基因调节 mtDNA 复制特异性,该研究旨在确定后编辑细胞是否能够在体外维持,并评估它们在培养中连续传代后是否会出现 mtDNA 拷贝数和线粒体膜电位的变化。编辑后的细胞在培养中扩增,我们进行了生长曲线、倍增时间、细胞活力、线粒体 DNA 拷贝数和线粒体膜电位测定。编辑过程并没有使细胞培养变得不可行,尽管与对照组相比,细胞生长率和活力有所下降,因为我们观察到在补充有尿苷和丙酮酸的培养基中培养时,细胞生长良好。它们还表现出典型的成纤维细胞样外观。用于确定 mtDNA 拷贝数的 RT-qPCR 表明,与不同细胞代次中未编辑的克隆(对照)相比,编辑后的克隆有所减少。用 Mitotracker Green 和 red 进行细胞染色表明,与未编辑的细胞相比,编辑后的细胞中的红色荧光有所减少。因此,通过表征,我们证明了 TFAM 基因对于线粒体的维持至关重要,因为它会干扰不同细胞传代中线粒体 DNA 拷贝数和膜电位的稳定性,从而证实了杂合编辑的细胞中线粒体活性的降低。
