图 1:两种模态(M 1 − M 2)的五种合理候选子空间结构(S 1 − S 5)。每个面板描绘了五种不同的合理场景(S 1 − S 5)中两种模态(M 1 − M 2)源之间的理想化关联。每个块的大小表示子空间内的源数量(子空间大小)。以蓝色突出显示的彩色子空间在模态之间链接,而以绿色突出显示的黑色子空间(S 1 − S 4 中的 1×1 块)特定于每种模态(无跨模态相关性)。对于每种模态,同一子空间内的源在统计上是相关的,而不同子空间中的源在统计上是独立的。
提供两种模式将使参与者能够选择最适合其生活和学习方式的模式,并避免潜在的障碍(例如,缺乏互联网接入、缺乏交通、家庭负担)。提供多种模式符合国家关于满足参与者独特需求、解决参与障碍和提供灵活性的建议。提供多种模式有助于俄勒冈州实现健康公平的战略目标,使国家DPP更易于获取、更具包容性,并根据参与者的需求与文化相关。了解更多信息,请参阅国家DPP覆盖工具包中关于参与者保留的关键建议。
▪在健康组织中nectin-4的表达有限,其在具有不同医学需要的几种实体瘤中的表达为以不同方式的治疗打开了机会
信息检索是一个不断发展且至关重要的搜索域。对高质量人类运动数据的大量需求,尤其是在在线获取中,导致人类运动研究工作的激增。先前的作品主要集中在双模式学习上,例如文本和运动任务,但是很少探索三模式学习。直觉上,额外的引入方式可以丰富模型的应用程序方案,更重要的是,对额外模式的适当选择也可以充当中介,并增强其他两个不同方式之间的对齐方式。在这项工作中,我们介绍了Lavimo(语言视频 - 动作对齐),这是一个三模式学习的新型框架,将以人为中心的视频整合为一种额外的方式,从而可以在文本和运动之间弥合差距。更重要的是,我们的方法利用了一种专门设计的注意机制来增强文本,视频和运动方式之间的一致性和协同作用。经验,我们对HumanML3D和Kit-ML数据集的结果表明,Lavimo在各种与运动相关的跨模式检索任务中实现了最先进的表现,包括文本到动作,动作到运动,视频,视频到视频,动作和动态。我们的项目网页可以在https://lavimo2023.github.io/lavimo/中找到。
医学微波成像(MMWI)是一种医学成像的替代类型,在过去20多年的少数医疗应用中显示出令人鼓舞的结果。与其他成像方式相比,这是一种有吸引力的成像方式,其非侵入性,非离子化辐射,低功率和相对较低的成本。此外,MMWI的安装,操作和维护成本可能较低。所有这些特征使MMWI成为筛查几种疾病或疾病的有吸引力的成像方式。MMWI使用微波辐射来基于生物组织的不同介电特性(在层析成像微波成像的情况下)或生物组织之间的介电对比度(对于雷达微波成像)。
神经胶质瘤是原发性脑肿瘤最普遍的类型之一,占所有病例的30%以上,它们是从神经胶质茎或祖细胞中发育的。从理论上讲,大多数脑肿瘤可以完全通过使用磁共振成像(MRI)来识别。每种MRI模态都提供有关人脑软组织的不同信息,并整合所有MRI的信息将提供全面的数据,以准确分割神经胶质瘤,这对于患者的预后,诊断和确定最佳后续治疗至关重要。不幸的是,由于多种原因,MRI容易出现工件,这可能导致缺少一种或多种MRI方式。多年来,已经提出了各种策略,以综合缺失的方式或补偿其对自动分割模型的影响。但是,这些方法通常无法对基础丢失的信息进行建模。在本文中,我们为MRI图像上的脑肿瘤分割提供了一种匹配的U-NET(SMU-NET)。我们的共同训练方法利用内容和样式匹配机制将信息从全模式网络提炼为缺失的模态网络。为此,我们将全模式和缺失模式数据编码为潜在空间,然后将表示空间分解为样式和内容表示形式。我们的样式匹配模块通过学习匹配函数以将信息和纹理特征从全模式路径传输到缺失模式路径,从而自适应地重新校准表示空间。此外,通过对互信息进行建模,我们的内容模式超过了信息较少的特征,并根据歧视性语义特征重新校准表示空间。BRATS 2018数据集的评估过程显示了所提出的方法在缺失模态方案上的重要性。关键字:缺失方式,脑肿瘤,内容式匹配,分割。
胶质瘤是最常见的原发性脑肿瘤类型之一,占所有病例的 30% 以上,它们由胶质干细胞或祖细胞发展而来。理论上,大多数脑肿瘤可以通过使用磁共振成像 (MRI) 来识别。每种 MRI 模态都会提供有关人脑软组织的不同信息,整合所有这些信息将为胶质瘤的准确分割提供全面的数据,这对于患者的预后、诊断和确定最佳后续治疗至关重要。不幸的是,由于各种原因,MRI 容易出现伪影,这可能导致一个或多个 MRI 模态缺失。多年来,已经提出了各种策略来合成缺失的模态或补偿其对自动分割模型的影响。然而,这些方法通常无法模拟潜在的缺失信息。在本文中,我们提出了一种风格匹配 U-Net (SMU-Net) 用于 MRI 图像上的脑肿瘤分割。我们的联合训练方法利用内容和风格匹配机制将全模态网络中的信息特征提取到缺失模态网络中。为此,我们将全模态和缺失模态数据编码到潜在空间中,然后将表征空间分解为风格和内容表征。我们的风格匹配模块通过学习匹配函数将信息和纹理特征从全模态路径转移到缺失模态路径,自适应地重新校准表征空间。此外,通过对互信息进行建模,我们的内容模块超越了信息量较少的特征,并根据判别性语义特征重新校准了表征空间。BraTS 2018 数据集上的评估过程显示了所提出方法在缺失模态场景中的重要性。关键词:缺失模态、脑瘤、内容风格匹配、分割。
应力超声心动图(ECG)是一种常用的方式,用于检测和评估缺血性心脏病(IHD)。其非侵入性的性质使其成为更可靠的诊断工具。这种方式通过运动或药理学剂诱导心肌压力。由运动压力测试引起的压力超声心动图比药理压力测试更重要,因为其发现讲述了患者的运动能力,这在预后很重要。因此,如果患者可以运动,这是首选的应力方式。此外,它的无辐射性质使其成为具有其他压力成像技术禁忌症的个体的首选选择,并且还减少了与其他心脏成像方式相关的并发症。可以通过比较应力超声心动图术后心率和心电图的发现,可以准确评估临床条件。应力超声心动图的分析是通过对心肌收缩性和区域壁运动异常的视觉精确评估来完成的。这种方式在当前的技术和使用图像增强剂的情况下,在必要时使用图像增强剂显示出了出色的结果。它也可以识别心肌缺血的位置。压力超声心动图具有较高诊断准确性,风险分层能力和成本效益的大量患者的变化,具有巨大的潜力。
使用多种模式的多模式深度学习系统,例如文本,图像,音频,视频等,表现出比单个模式(即单峰)系统更好的性能。多模式机器学习涉及多个方面:表示,翻译,对齐,融合和共同学习。在多模式机器学习的当前状态下,假设是在训练和测试时间内都存在所有模式,对齐和无声。然而,在实际的任务中,通常可以观察到缺少一种或多种方式,嘈杂,缺乏带注释的数据,具有不可靠的标签,并且在培训或测试中稀少,并且两者兼而有之。这一挑战是通过称为多模式共学习的学习范式来解决的。(资源贫乏)模式的建模是通过利用知识传递(包括其表示形式和预测模型)之间知识转移来帮助(资源丰富)模态来帮助的。