随着机器学习方法越来越多地用于增强人类决策能力,可解释人工智能 (XAI) 研究探索了将系统行为传达给人类的方法。然而,这些方法往往无法解释人类在与解释互动时的情感反应。面部情感分析研究人类面部的情绪表达,是了解用户如何参与解释的一个有前途的视角。因此,在这项工作中,我们的目标是 (1) 确定人们与 XAI 界面交互时哪些面部情感特征会很明显,以及 (2) 开发一个多任务特征嵌入,将面部情感信号与参与者对解释的使用联系起来。我们的分析和结果表明,当参与者未能有效地使用解释时,面部 AU1 和 AU4 以及唤醒的发生和值会增加。这表明面部情感分析应该纳入 XAI,以根据个人的互动风格个性化解释,并根据执行任务的难度调整解释。
大脑衰老是一种区域性现象,在使用机器学习方法进行大脑年龄预测研究的领域中,这一方面仍未得到充分探索。体素级预测可以提供局部大脑年龄估计,从而提供有关区域衰老过程的详细见解。这对于了解健康受试者和患病受试者的衰老轨迹差异至关重要。在这项工作中,提出了一种基于深度学习的多任务模型,用于从 T1 加权磁共振图像进行体素级大脑年龄预测。所提出的模型优于文献中现有的模型,并且在应用于健康和患病人群时可产生有价值的临床见解。对体素级大脑年龄预测进行区域分析,以了解大脑中已知解剖区域的衰老轨迹,并表明健康受试者的区域衰老轨迹与患有痴呆症和更具体地说阿尔茨海默病等潜在神经系统疾病的人存在差异。我们的代码可以在 https://github.com/nehagianchandani/Voxel-level-brain-age-prediction 上找到。
神经算法推理旨在通过学习模型模仿经典算法的执行来捕获神经网络的计算。虽然共同体系结构具有足够的表现力,可以在权重空间中包含正确的模型,但当前的神经推理者正在努力概括分布数据。另一方面,经典计算不受分布变化的影响,因为它们可以描述为离散计算状态之间的过渡。在这项工作中,我们建议迫使神经推理者将执行轨迹保持为有限的预定状态的组合。为了实现这一目标,我们将离散和连续数据流分开,并描述它们之间的相互作用。在算法的状态转换上接受了监督训练,此类模型能够与原始算法完全保持一致。为了证明这一点,我们在多种算法问题上评估了我们的方法,并在单件任务和多任务设置中获得完美的考试成绩。此外,提出的架构选择使我们能够证明任何测试数据的学习算法的正确性。
这是一个多任务文本数据处理方法框架,基于 Plutchik/Ekman 的情绪检测和趋势检测方法,作为有意义的情绪检测和分析的管道实现。我们对该框架进行了评估并建立了一个试点系统。结果证实了所提出的框架对 COVID-19 推文的主题趋势和情绪检测的有效性。我们的研究结果表明,居家限制导致人们在推特上表达了积极和消极的情绪语义(感受),其中消极情绪是“愤怒”(8.5% 的推文),其次是“恐惧”(5.2%)、“期待”(53.6%),积极情绪语义是“喜悦”(14.7%)和“信任”(11.7%)。与呆在家里有关的安全问题的语义趋势在 28 天内迅速下降,与朋友死亡和隔离生活有关的负面情绪在某些日子里有所增加。这些发现有可能通过监测被隔离人员的情绪变化趋势来影响公共卫生政策决策。本文提出的框架有可能通过用作在线情绪检测工具包来协助此类监测。
行政功能问题的迹象如果中风会影响您的执行功能,您可能会发现很难:•找出如何做某些事情。这可能是一项似乎很简单的任务,就像更改电视遥控器上的频道一样,或者可能更复杂,例如做饭。•计划如何完成任务。您可能无法想到做某事所需的所有步骤,例如制作一杯茶,或以正确的顺序将步骤放置。•自己开始或完成任务。您可能没有意识到您需要做某事,例如穿衣服,直到有人告诉您,或者您可能需要某人在整个任务中提示您来帮助您完成它。•自己解决问题。,如果出现问题,您可能无法确定该怎么办。•一次(多任务)执行不止一件事。您可能会发现很难在任务之间切换,并记住每个任务的位置。
图上的异常检测重点是识别图形结构化数据中不规则的贴合或异常淋巴结,这显着偏离了规范。由于其在垃圾邮件检测,反洗钱和网络安全性等各个领域的广泛适用性,因此该领域的重要性很高。在图表上应用异常检测时,应对标签不平衡和数据不足所带来的challenges是显着的。生成模型(尤其是扩散模型)的最新扩散铺平了一种有希望的方式。在本文中,我们引入了潜在空间中的图扩散模型,该模型旨在减轻图表上异常检测中普遍存在的标签失衡问题。所提出的模型能够多任命生成图形结构和节点特征,并具有有条件的生成能力,仅产生积极的示例,从而减轻标签不平衡问题。我们改进了扩散模型,以应用于同质图和异质图。通过广泛的实验,我们证明了我们提出的方法对传统技术提供了显着改进。
鉴定蛋白质 - 蛋白质相互作用(PPI)对于在细胞内的众多生物过程中进行深入见解至关重要,并且在药物开发和疾病治疗等领域具有显着的指导价值。当前,大多数PPI预测方法主要集中于蛋白质序列的研究,忽略了蛋白质内部结构的关键作用。本文提出了一种名为MGSlappi的新型PPI预测方法,该方法将注意力集中在我的蛋白质结构信息上,并通过多任务学习策略增强了蛋白质编码器的表现力。具体来说,我们将端到端PPI预测过程分解为两个阶段:氨基酸残基重建(A2RR)和蛋白质相互作用预测(PIP)。在A2RR阶段,我们采用基于图的基于图的残基重建方法来探索蛋白质的内部关系和特征。在PIP阶段,除了基本的相互作用预测任务外,我们还引入了两个辅助任务,即蛋白质特征重建(PFR)和蒙版相互作用预测(MIP)。PFR任务旨在重建在PIP阶段的蛋白质的表示,而MIP任务则使用部分掩盖的蛋白质特征进行PPI预测,两者都在协调一致地工作以提示MGSlappi捕获更多有用的信息。实验结果表明,MGSlappi在各种数据分配方案下的现有最新方法显着优于现有的最新方法。
摘要:主动位点及其结构敏感性的性质是有效催化剂理性设计的关键,但在异质催化中已经进行了近一个世纪的辩论。尽管Brønsted -evans -polanyi(BEP)以及线性缩放关系长期以来一直用于研究这种关系中的反应性,明确的几何形状和组成特性,这一事实阻止了其在支持催化剂的结构敏感性中的探索。在这项工作中,基于可解释的多任务符号回归和全面的第一原理数据集,我们发现了一个结构描述符,拓扑不足的数量由价电子数量和晶格常数介导,以成功地解决金属催化剂的结构敏感性。用于训练,测试和可传递性研究的数据库包括10种过渡金属,两个金属晶体学阶段和17个不同方面的20种不同化学键的破坏键屏障。所得的2D描述符组成结构项,反应能量项显示出非常准确的准确性,可以预测与对称性,键顺序和空间阻滞中不同化学键的数据集的反应障碍和概括性。理论是物理和简洁的,提供了一种建设性的策略,不仅是为了理解结构敏感性,而且还可以破译金属催化剂的纠缠几何和电子效应。所揭示的见解对于位点特异性金属催化剂的合理设计很有价值。■简介
深度神经网络 (DNN) 是功能强大的黑盒预测器,在各种任务上都取得了令人印象深刻的表现。然而,它们的准确性是以牺牲可理解性为代价的:通常不清楚它们如何做出决策。这阻碍了它们在医疗保健等高风险决策领域的适用性。我们提出了神经加性模型 (NAM),它将 DNN 的一些表达能力与广义加性模型固有的可理解性相结合。NAM 学习神经网络的线性组合,每个神经网络都关注一个输入特征。这些网络是联合训练的,可以学习输入特征和输出之间任意复杂的关系。我们在回归和分类数据集上的实验表明,NAM 比广泛使用的可理解模型(如逻辑回归和浅层决策树)更准确。它们在准确性方面的表现与现有的最先进的广义加性模型相似,但更灵活,因为它们基于神经网络而不是增强树。为了证明这一点,我们展示了如何利用 NAM 对合成数据和 COMPAS 累犯数据进行多任务学习(由于其可组合性),并证明了 NAM 的可微分性使它们能够为 COVID-19 训练更复杂的可解释模型。源代码可在 neuro-additive-models.github.io 上找到。
内在学习(ICL)是一种提示,其中变压器模型以(输入,输出)示例的序列运行,并在当时进行分解。在这项工作中,我们将上下文学习形式化为一种算法学习问题,其中变压器模型在推理时间内隐含构建了假设函数。我们首先通过多任务学习的镜头探索了该抽象的统计方面:当输入提示为(1)I.I.D的顺序时,我们会对ICL进行概括。(输入,标签)对或(2)由动态系统产生的轨迹。我们的分析的症结是将多余的风险与变压器所影响的算法的稳定性有关。我们表征了当变压器/注意体系结构可证明遵守稳定性条件并提供示例验证时。对于对看不见的任务的概括,我们确定了一种归纳偏见现象,其中转移学习风险受任务复杂性和MTL任务的数量的控制。最后,我们提出了数值评估,即(1)证明了变形金刚确实可以在I.I.D的经典回归问题上实施近乎最佳的算法。和动态数据,(2)提供有关稳定性的见解,(3)验证我们的理论预测。