多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
Triboelectric纳米生成器(Tengs)是多功能电子设备,用于环境能量收集和具有广泛潜在应用的自动性电子设备。Tengs的快速发展对传统电子设备的环境影响引起了极大的关注。在这种情况下,研究电子中合成和有毒物质的替代方法具有重要意义。在这篇综述中,我们专注于基于天然多糖材料的Tengs。首先,总结了和讨论了高性能tengs的工作机制和材料的一般概述。然后,回顾了2015年至2020年在文献中报告的基于多糖的tengs的最新进展以及其潜在的应用。在这里,我们的目的是将多糖聚合物作为绿色Tengs发展的有前途且可行的替代品,并应对回收电子垃圾的挑战。
单电子控制的基本概念:添加单个电子之前和之后的导电岛(a)。添加单个未补偿的电子电荷会产生电场 E,这可能会阻止添加以下电子。基于单电子转移的设备:a) 单电子盒:这是一种基于单电子转移的电子设备。图 (a) 显示了概念上最简单的设备,即“单电子盒”。该设备仅由一个小岛组成,小岛与较大的电极(“电子源”)之间通过隧道屏障隔开。可以使用另一个电极(“栅极”)将外部电场施加到岛上,该电极与岛之间通过较厚的绝缘体隔开,这不允许明显的隧穿。该场改变了岛的电化学电位,从而决定了电子隧穿的条件。图 (b) 显示了特定的几何结构,其中“外部电荷” Q e = C 0 U 可以很容易地可视化,(c) 显示了“库仑阶梯”,即平均电荷 Q = -ne 对栅极电压的阶梯式依赖性,适用于几个温度值。栅极电压 U 的增加会吸引越来越多的电子进入岛。电子通过低透明度屏障的传输的离散性必然使这种增加呈阶梯状。
微电极阵列提供了记录对大脑研究至关重要的电生理活动的方法。尽管它起着根本性的作用,但没有办法定制电极布局以满足特定的实验或临床需求。此外,目前的电极在覆盖范围、易碎性和成本方面存在很大局限性。使用克服这些局限性的 3D 纳米粒子打印方法,我们展示了利用 3D 打印过程灵活性的电极的首次体内记录。可定制且物理上坚固的 3D 多电极设备具有高电极密度(2600 个通道/cm 2 面积),组织损伤最小,信噪比极佳。这种制造方法还允许灵活的重新配置,包括不同的单个柄长度和布局,具有较低的总通道阻抗。这在一定程度上是通过定制的 3D 打印多层电路板实现的,这本身就是一项制造进步,可以支持多种生物医学设备的可能性。这种有效的设备设计可以实现整个大脑的有针对性和大规模电信号的记录。
1量子计算与通信技术中心,电气工程和电信学院,新南威尔士州悉尼,新南威尔士州2052,澳大利亚2 Physikalisch-Technische Bundesanstalt,38116,Braunschweig,德国Braunschweig,德国Technologies,Windsor House,Windsor Road,Harrogate HG1 HG1 2PW,英国5物理学院,悉尼大学,悉尼,悉尼,新南威尔士州,2006年,澳大利亚6 Microsoft Corporation,Q悉尼站,悉尼,悉尼,悉尼,新南威尔士大学,2006年,新南威尔士大学,2006年,澳大利亚澳大利亚7号,DTU FOTONIK,DTU FOTONIK,DENMASK,DENMASK,DENMBRED,DENMASK,DENMASK,DENMASK,DENMASK,DENMASK,DENMASK,DENSKRED 33 34。
摘要 人类与致命疾病的斗争自古以来就一直在持续。科学技术在对抗这些疾病方面的贡献不容忽视,这完全归功于新方法和产品的发明,它们的尺寸范围从微米扩展到纳米。最近,纳米技术因其诊断和治疗不同癌症的能力而受到越来越多的关注。不同的纳米粒子已被用于规避与保守的抗癌输送系统相关的问题,包括其非特异性、副作用和突发释放。这些纳米载体包括固体脂质纳米粒子 (SLN)、脂质体、纳米脂质载体 (NLC)、纳米胶束、纳米复合材料、聚合物和磁性纳米载体,它们带来了抗肿瘤药物输送的革命。纳米载体提高了抗癌药物的治疗效果,在特定部位更好地积累并持续释放,提高了生物利用度,并绕过正常细胞导致癌细胞凋亡。在这篇综述中,简要讨论了癌症靶向技术和纳米粒子的表面改性,以及可能面临的挑战和机遇。可以得出结论,了解纳米医学在肿瘤治疗中的作用具有重要意义,因此,该领域的现代进展对于肿瘤患者的繁荣今天和富裕未来至关重要。
结肠癌是美国癌症的主要原因之一。结肠癌是由结肠癌细胞基因组中的许多基因突变发展而来的。长的非编码RNA(LNCRNA)会导致许多癌症(包括结肠癌)的发育和进展。lncRNA已经并且可以通过簇状的定期间隔短的短质体重复序列(CRISPR)相关的核酸酶9(CRISPR/CAS9)系统的聚类重复序列的基因编辑技术来纠正,以减少结肠癌细胞的增殖。但是,许多用于运输基于CRISPR/CAS9的疗法的当前输送系统需要更多的安全性和效率。基于CRISPR/CAS9的治疗药需要安全有效的递送系统,以更直接,更明确地靶向结肠中存在的癌细胞。本综述将提供有关使用植物衍生的外泌体样纳米颗粒作为纳米载体的效率和安全性的相关证据,以提供基于CRISPR/CAS9的疗法以直接靶向结肠癌细胞。
化学气相沉积 (CVD) 是制造真正单层石墨烯 (SLG) 的工艺。Versarien 的子公司 Versarien Korea Ltd.(韩国)在洁净室环境中使用快速热 CVD 工艺 (RT-CVD) 制造 SLG。石墨烯的合成和层压、转移和堆叠均在 1000 级(ISO 6)实验室中进行,而湿化学蚀刻和所有石墨烯特性分析均在 10000 级(ISO 7)实验室进行。我们的标准产品包括尺寸最大为 200 x 200 毫米的铜箔上的 SLG(CVD-101)、转移到 SiO 2 /Si 晶片上的 SLG(CVD-201)或转移到 PET 基板上的 SLG(CVD-301)。我们还提供生产多层堆叠石墨烯的服务,并将石墨烯转移到客户选择的其他基板上。
癌症免疫疗法在治疗各种恶性肿瘤方面取得了巨大的进步。成功免疫疗法的最大障碍是癌细胞的免疫抑制肿瘤微环境(TME)和低免疫原性。要成功进行免疫疗法,必须将“冷” TME转换为“热”免疫刺激状态,以激活残留的宿主免疫反应。为此,应损坏TME中的免疫抑制平衡,应诱导免疫原性癌细胞死亡以适当刺激杀死肿瘤的免疫细胞。光动力疗法(PDT)是诱导癌细胞免疫原性死亡(ICD)并破坏免疫限制性肿瘤组织的有效方法。PDT会触发链反应,该链反应将使TME“热”并具有ICD诱导的肿瘤抗原呈现给免疫细胞。原则上,PDT和免疫疗法的战略组合将协同作用,以增强许多棘手的肿瘤的治疗结果。采用纳米载体的新技术是开发出来的,以提供光敏剂和免疫治疗剂对TME有效。新一代纳米医学已开发用于PDT免疫疗法,这将加速临床应用。