硅纳米结构(如纳米式阵列)在各种应用中具有巨大的潜力,例如光伏电池[1],传感器[2],信息存储[3],仅举几例。纳米果(NNS)被定义为具有较高纵横比的纳米材料。那些属于两个主要类别:单针,外部操纵以接触细胞和组织(近场显微镜(AFM),微型操纵器)或支持基板支撑的垂直高纵横比纳米结构的阵列。前者涵盖了各种纳米结构,包括纳米线,纳米柱,多孔纳米酮,纳米管和纳米膜。各种材料/尺寸/形状使每种类型的NN具有不同的特定感应需求的特性,也就是说,在机械生物学,纳米电机生理学,光遗传学,纳米遗传学,转染/载体化/矢量化(药物输送)中,各种应用[4] [4]。
一家学校理工学院,加拿大蒙特利尔b实验室C查尔斯·库仑(Charles Colomb) INP,CNRS,Univers de Toulouse,118 De Narbonne,31062 Toulouse,Cedex 9,法国H Karlsruhe技术研究所(KIT) 法国。 e-mail: etienne.gaufres@cnrs.fr k Humboldt-universita zu Berlin, Germany L Lumin, Universite Ét Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France M University of Montreal, Canada N University of Vienna, Austria o University of Paris, Ecole Normale Paris, PSL, PSL, Free University of德国柏林,Q工程和信息学系,意大利佩加索大学,意大利的佩加索大学。 请参阅do:https://doi.org/10.1039/d3cs00467h一家学校理工学院,加拿大蒙特利尔b实验室C查尔斯·库仑(Charles Colomb) INP,CNRS,Univers de Toulouse,118 De Narbonne,31062 Toulouse,Cedex 9,法国H Karlsruhe技术研究所(KIT) 法国。e-mail: etienne.gaufres@cnrs.fr k Humboldt-universita zu Berlin, Germany L Lumin, Universite Ét Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France M University of Montreal, Canada N University of Vienna, Austria o University of Paris, Ecole Normale Paris, PSL, PSL, Free University of德国柏林,Q工程和信息学系,意大利佩加索大学,意大利的佩加索大学。请参阅do:https://doi.org/10.1039/d3cs00467h
抽象的碳化硅(SIC)的目标是由于其出色的热性能,是功率微电子的第一材料。SIC技术的最新进展最终使Crystalline SIC纳米结构的制造。然而,纳米级SIC的热性能仍然忽略了。在这里,我们系统地研究了SIC纳米结构的热传导,包括纳米膜,纳米线和语音晶体。我们的测量结果表明,纳米结构的热导率比批量低几倍,并且值与结构的最狭小维度成比例。在最小的纳米结构中,导热率达到了批量的10%。为了更好地了解SIC中的纳米级热传输,我们还探测了声子在纳米结构中的平均自由路径和连贯的热传导。我们的理论模型将观察到的热传导的抑制与表面声子散射联系起来,这限制了声子的含义自由路径,从而降低了导热率。这项工作揭示了SIC纳米结构的热特性并解释了它们的起源,从而实现了SIC微电子的逼真的热工程。
摘要:在三十多年来,基于肿瘤选择性治疗实体瘤的渗透性和保留率(EPR)效应的纳米医学已受到了很大的关注。然而,由于肿瘤或栓塞性肿瘤血管,晚期癌症的治疗仍然是一个巨大的挑战,这导致了EPR效应的所谓异质性。我们先前使用一氧化氮供体和其他称为EPR效应增强子的药物来恢复血管中血管中血流受损的方法。在这里,我们表明,两个新型的EPR效应增强剂 - 异端二硝酸盐(ISDN,Nitrol®)和Sildena fi柠檬酸盐 - 将三种大分子分子药物递送至肿瘤:聚(造型(造型(造型))(造型 - co-maleic Acid)(Sma)和cisplatin,smaplatin,smaplatin,smaplatin;聚(N-(2-羟丙基)甲基丙烯酰胺)聚合物共轭锌原磷脂(光动力疗法和成像);和SMA葡萄糖胺 - 偶联的硼酸络合物(硼中子捕获疗法)。我们在患有晚期C26肿瘤的小鼠中测试了这些纳米果。当这些纳米医学与ISDN或Sildena-Fil一起施用时,肿瘤递送,因此阳性治疗结果在直径为15 mm或更多的肿瘤中增加了2至4倍。这些结果证实了使用EPR效应增强子恢复肿瘤血流的基本原理。总而言之,所有测试的EPR效应增强剂均显示出在癌症治疗中应用的巨大潜力。
a School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Street, Harbin 150001, China b Laboratoire Charles Coulomb (L2C) UMR 5221 CNRS-Université de Montpellier, F- 34095 Montpellier, France c Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China d School of Energy and山东大学的动力工程,Qingdao 266237,中国E Institut Universitaire de France,1 Rue Descartes,F-75231 Paris Cedex 05,法国
基本原理:B细胞恶性肿瘤的常规化学疗法通常受到耐药性和由于非特异性靶向而引起的显着副作用的限制。这项研究旨在通过开发专门针对肿瘤细胞的纳米分娩系统来提高治疗效率,从而提高治疗精度并降低脱靶毒性。方法:使用TEM,HPLC,FTIR光谱,CCK-8测定法,流式细胞仪(FC)和IVIS Imaging评估CD19@NP/17-DMAG的构建,生物相容性和靶向能力。通过Western印迹,RT-QPCR,流式细胞仪,H&E染色,BRDU分析和凋亡测定法评估了治疗功效。使用RNA测序,体内T细胞耗竭和CRISPR/CAS9技术研究了鼠B细胞恶性肿瘤中CD19@NP/17-DMAG的作用机理。结果:CD19@NP/17-DMAG纳米颗粒在与酪氨酸激酶抑制剂(TKIS)(包括BCR-ABL-ABL-ABL-ABL-ABL-ABL-ABL-ABLE1-TARGARGEDSPARGEDS-SPARGEDSPECPENTIB and imatib and imatib and proppectrum proppectrum proppectrum proppectrum pondeppectrum conteppectrum)中结合使用BCR-ABL1⁺B-abl1⁺B-abl1⁺B-abl1⁺B-abl1⁺B-abl1⁺B-abl1⁺B-abl1⁺B-abl1的疗效增强。这种组合显着减轻了肿瘤负担,延长生存率并诱导了强大的抗肿瘤T细胞反应。RNA-SEQ分析表明,靶向治疗调节基因与细胞增殖,凋亡和抗原表现相关。 值得注意的是,这种治疗方法还增加了MHC I类(MHC-I)的表达,从而加强了BCR-ABL1 b-all细胞中的抗原表现。 基于Ponatinib的治疗已完全缓解,消除了最小残留疾病,并在BCR-ABL1⁺b-all中建立了长期的免疫记忆。RNA-SEQ分析表明,靶向治疗调节基因与细胞增殖,凋亡和抗原表现相关。值得注意的是,这种治疗方法还增加了MHC I类(MHC-I)的表达,从而加强了BCR-ABL1 b-all细胞中的抗原表现。基于Ponatinib的治疗已完全缓解,消除了最小残留疾病,并在BCR-ABL1⁺b-all中建立了长期的免疫记忆。此外,CD19@NP/17-DMAG在另一个B细胞恶性肿瘤模型A20淋巴瘤中有效,肿瘤的生长显着减慢和扩增T细胞反应。结论:这些发现突出了CD19@NP/17-DMAG系统是一种有希望的治疗方法,既可以增强T细胞免疫反应,又可以最大程度地减少B细胞恶性肿瘤的副作用。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
摘要。高速原子力显微镜(HS-AFM)可实现具有特殊空间(X-Y平面中1 nm的生物结构的纳米级成像; z方向〜0.1 nm)和时间分辨率(每帧〜20 ms)。hs-afm在二维(2d)的前进中编码三维(3D)信息,其中结构的横向尺寸(x,y)与图像中的空间姿势相对应,而高度(z)信息则嵌入到像素强度中。这种独特的数据结构在分割和形态分析中提出了重大挑战,需要专门的计算方法。为了克服这些局限性,我们开发了“ AFMNANOQ”,这是一个由特征驱动的组合框架,用于分割HS-AFM数据的分割和形态测量。我们的方法独立于标记的培训数据,使数据稀缺性可靠,同时又是为未来深入学习应用程序提供高质量标记的数据集的强大工具。我们使用合成和实验性AFM/HS-AFM DATASET来验证AFMNANOQ,包括对α-蛋白素(αHl)的构象和动力学的半自动分析,一种β-桶孔形成孔(PFT),由葡萄球菌分泌的expaph-ylococcus a ylococcus a a paph-ylococcus a nurus。我们的方法通过深度学习模型实现竞争性能,同时保持各种HS-AFM数据集的卓越适应性。作为未来的观点,我们计划将其进一步开发或将其与深度学习模型相结合,以增强分割性能并从实验性AFM图像中重建3D结构。这将利用本研究中产生的构象文库,从而实现两种甲基化合物之间的交叉验证,并最终在AFM图像分析中弥合特征驱动和数据驱动的AP之间的差距。
制造了抽象的高密度聚乙烯(HDPE)基于基于三种不同类型的石墨烯纳米纤维素(GNP)的纳米复合材料(GNP),以研究GNP的尺寸效应,以横向大小和厚度对形态,热,电气和机械性质的侧向尺寸和厚度。结果表明,GNP的包含增强了基于HDPE的纳米复合材料的热,电和机械性能,而不论GNP大小如何。然而,使用较大的侧向大小的GNP实现了热导电和最低电渗透阈值的最显着增强。这可能归因于以下事实:较大的侧向尺寸的GNP在HDPE中表现出更好的分散体,并形成了在扫描电子显微镜(SEM)图像中易于观察到的诱导途径。我们的结果表明,与其厚度相比,GNP的横向大小是上述纳米复合材料的更调节因素。对于给定的侧向尺寸,较薄的GNP显示出明显更高的电导率,并且渗透阈值低于较厚的电导率。另一方面,就热导率而言,仅在某个填充浓度上方观察到了显着的增强。结果表明,与其他相比,由于分散度较差,横向尺寸较小且厚度较大的GNP会导致样品机械性能的增强。另外,GNP的尺寸对HDPE/GNP纳米复合材料的熔化和结晶特性没有相当大的影响。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。