抽象的肥厚疤痕(HS)是一种斑块斑块和硬性皮肤病变,可能会对患者引起身体,心理和化妆品挑战。三秒乙醇酮(TA)的感染内注射通常在临床实践中使用,这会导致HS组织中难以忍受的疼痛和不均匀的药物递送。在这里,我们开发了一个纸电池驱动的离子电池驱动的微针贴片(PBIMNP),用于HS的自我管理。通过将纸电池作为离子电池的电源来实现PBIMNP的高积分。PBIMNP的透皮药物输送策略合并了微对基和离子噬菌体技术,涉及“按压和戳戳,相变,扩散和离子噬菌体”,可以积极地将90.19%的药物递送到HS组织中,具有出色的体外药物渗透性。PBIMNP给药有效地降低了mRNA和蛋白质水平,导致TGF-β1和Col I与HS形成相关的表达降低,证明其在HS处理中的效率。微针和可穿戴设计赋予PBIMNP,作为HS治疗自我管理的高度有希望的平台。
硅纳米结构(如纳米式阵列)在各种应用中具有巨大的潜力,例如光伏电池[1],传感器[2],信息存储[3],仅举几例。纳米果(NNS)被定义为具有较高纵横比的纳米材料。那些属于两个主要类别:单针,外部操纵以接触细胞和组织(近场显微镜(AFM),微型操纵器)或支持基板支撑的垂直高纵横比纳米结构的阵列。前者涵盖了各种纳米结构,包括纳米线,纳米柱,多孔纳米酮,纳米管和纳米膜。各种材料/尺寸/形状使每种类型的NN具有不同的特定感应需求的特性,也就是说,在机械生物学,纳米电机生理学,光遗传学,纳米遗传学,转染/载体化/矢量化(药物输送)中,各种应用[4] [4]。
肥胖,全球健康挑战,需要有效,可访问和创新的治疗模型。在这里,我们开发了一种可用于肥胖症的索诺 - 基因治疗的时空可控的微针(MN)药物输送平台。该平台提供了甲氧基聚乙烯聚乙烯 - 聚乙烯亚胺(MPEG-PEI)修饰的金属有机框架(MOFS)Sonosensitizer,并定期散布的短侧滴定palindromic重复激活(CRISPRA)/CRISPRA-CRISPRA-INC-INCUNCPARA-INSCORTERS in-INSCORTERS in INSTERTERS ADINCERTERS 1(UCPPERTALLY 1(UCPPERTALLY 1(UCPERTALLY 1)。总体而言,该疗法平台能够实现两种主要的“ an灭”和“对策”的策略:一种是通过声差疗法杀死多余的白色脂肪细胞,另一个是通过可控的CRISPRA-UCP1系统和Sonodynalnalnamic效应来促进白色脂肪细胞的褐变。用这种声音疗法治疗的肥胖雄性小鼠表明葡萄糖耐受性和胰岛素敏感性明显改善,成功地实现了体重减轻并约束重量反弹。这项研究可能使肥胖和其他代谢疾病的索诺基因治疗能够实现标准治疗范例。
自 2024 年 6 月 30 日起,该策略名称从 Columbia Stable Value High Quality Income 更改为 Columbia Threadneedle US Stable Value High Quality Income 资料来源:Columbia Threadneedle Investments 过往表现并不能保证未来的结果。综合回报假设收入和资本收益再投资,以美元计算和列示,一年以上的期间按年计算。费用扣除回报是扣除佣金和其他交易成本后的时间加权回报率。费用扣除回报的计算方法是从每月费用扣除综合回报中扣除相应期间最高客户费用(模型费用)的十二分之一。投资涉及风险,包括本金损失的风险。无法保证一定能实现目标或满足任何回报预期。并非所有投资工具在每个司法管辖区都可用,某些投资工具可能由关联公司提供。有关更多信息,请访问:www.columbiathreadneedle.com © 2022-2025 Columbia Management Investment Advisers, LLC。保留所有权利。仅供机构使用。
摘要:空心微针旨在执行皮内医学物质的递送或液体提取,聚合物通过注射成型作为质量生产的成本效益材料。但是,现有研究缺乏对皮肤穿透测试的可加工性和性能的不同聚合物的比较分析。这项研究通过评估五种生物相容性热塑性材料制造的空心微对材料来解决这一差距:聚碳酸酯(PC),聚丁烯二苯甲酸酯(PBT),多酰胺酸(PLA),多酰胺12(PA12)和玻璃纤维增强型多酰胺多酰胺(PARAMANEMAMEMIMANE)(PARA)。在热塑性塑料中发现了复制保真度的显着差异,并且计算出更高的固化时间,从而导致由于填料阶段的扩展可变形性而产生了更好的复制保真度。PBT微针在脱再多造成的过程中变形,并被排除在穿透测试之外。在小猪耳朵上的穿透试验显示,由于针的变形,PA12和PLA微针的穿透性没有。para表现出一致的穿透结果,而PC表现出不一致的穿透行为,一些针的成功完全穿透了,而另一些针头变形。高机械性能对于实现一致和成功的穿透至关重要。
胰岛素代谢在胰腺β细胞中的失调需要对糖尿病患者(DM)使用外源性胰岛素注射(DM)使用外源性胰岛素。但是,这种注射经常与某些挑战有关,例如降血糖事件和身体不适。这项研究的目的是通过智能材料金属有机框架(MOF-5)设计一个新型的胰岛素输送平台,该平台纳入了溶解微针(DMN),作为一种更有效且较小的侵入性替代方案。在这方面,DMN制造使用纤维素纳米晶体(CNC),这些纳米晶体(CNC)来自甘蔗渣生物质的改良纤维素。本研究的发现表明,X射线衍射(XRD)分析证实了CNC的成功合成,结晶度指数为57%。MOF-5的掺入以多孔和响应材料为特征,可显着提高胰岛素的递送效率。扫描电子显微镜 - 能量色散X射线光谱(SEM-EDX)证实了MOF-5的孔结构的发展,并针对微针的应用优化了形态。此外,MOF-5的XRD分析表示64%的结晶度指数,反映了其结构完整性。MOF-5用作释放调节剂,确保持续的胰岛素给药并减轻过度释放的风险。将DMN与MOF-5整合在一起,为糖尿病管理提供了高效且微创胰岛素输送方法。体外实验表明,在8小时内,受控胰岛素释放了78%,而体内研究表明使用MOF-INS配方在动物模型中逐渐和受控的血糖调节。
个性化的生物医学设备,例如微针阵列(地图),提供了有希望的透皮药物输送技术,为传统的皮下注射性注射提供了安全,无痛和自我管理的替代方案。尽管具有精确的治疗性释放潜力,但采用MAP的采用受到有效载荷能力,治疗多功能性和制造可伸缩性的挑战的限制。为了解决这些问题,我们将微流体通道设计与地图技术集成在一起,增强了其在可调卷中提供一系列有效载荷的功能,从液体疗法到固态尺寸。使用注射连续液体界面生产(ICLIP),一种新型的增材制造方法,我们制造了具有复杂设计的高分辨率微流体图。受到各种有毒动物的刺痛和尖牙的启发,我们开发了一种仿生的微针设计,可防止堵塞,增强机械强度并消除针头泄漏,从而提高治疗性递送效率。我们的技术可靠地提供了多个不同的有效载荷,启用了组合混合,并实现了固态有效载荷的重新确定。预告片
* 通讯作者:firsel1012@gmail.com 摘要 注射器接种疫苗的使用提高了儿童的免疫覆盖率。尽管如此,肺炎仍然是五岁以下儿童死亡的主要原因,占该年龄段死亡人数的 70% 以上。为了应对针头恐惧症等挑战,透皮给药系统为局部和全身给药提供了一种有前途的微创替代方案。本研究重点开发和评估一种用于儿童肺炎疫苗透皮给药的椰果-透明质酸纤维素微针制剂。研究包括制备椰果、纤维素悬浮液、微针制造以及随后的特性描述和有效性测试。结果表明,微针达到溶胀平衡,溶胀度为 1。扩散测试表明,90 分钟内药物释放率为 1.173%,穿透角质层。扫描电子显微镜 (SEM) 分析证实,Pin 12 的平均微针长度为 763.6 μm,宽度为 191.7 μm,表明其适合透皮应用。这些发现凸显了椰果透明质酸微针是设计精良且有效的肺炎球菌疫苗输送平台,为改善儿科免疫接种和应对儿童医疗保健中的关键挑战提供了一种新颖的解决方案。关键词:药物输送系统、微针、椰果、PCV-13(肺炎球菌结合疫苗-13)
微针首先是由硅制成的,因为微电子工业为制造综合电路提供了工具,可以适用于微针制造,而硅仍然是最常见的微针材料20。但是,基于洁净室的制造需要复杂的操作和高昂的成本才能实现大规模生产。此外,硅具有可穿戴应用的几个缺点,这就是为什么已经研究了用于微针制造的聚合物材料,金属和其他材料(例如陶瓷)的原因。对于聚合物的微针,越来越明显的是,用于开发下一代聚合物微针的偏爱制造方法和药物输送贴片将是光刻,复制品成型,3D打印和微机械工具20。对于金属微针,光化学蚀刻,电镀和激光切割是最常见的制造技术20。不幸的是,从制造的角度来看,金属微针的制造具有诸如电镀和升降之类的复杂性,这对于质量生产20是不希望的。其他用于微针制造的制造工艺包括注射成型,湿化学蚀刻,反应性离子蚀刻,热压花,激光钻孔,光刻和电型,绘画光刻,两光子聚合和3D打印20。