摘要。现代神经界面的市场尽管不幸的是,尽管它的积极发展,但可以为用户提供许多现有的原型,这些原型具有相对较低的人类操作员控制效果的准确性和识别可靠性。此外,市场上的任何神经界面都必须分别针对每个操作员量身定制,这使得很难使其准确性,精度和可靠性客观化。解决上述问题的第一步是对本文介绍的现有神经接口技术市场的不同价格段进行比较分析。市场研究表明,尽管脑电图的缺点,但它是在神经界面系统中记录生物学信号的最易接收的非侵入性方法之一。为了促进未来的研究,已经考虑并分析了神经界面中已知模型和信号分析方法的主要优势和缺点。尤其是在信号预处理,诸如共同平均参考,独立组件分析,常见空间模式,表面拉普拉斯,常见的空间空间模式和自适应滤波等方法的信号预处理,优势和缺点的情况下。在评估信号的信息特征,模型和方法的分析基于自动锻炼的自适应参数,双线性自动化,多维自动进程,快速傅立叶变换,小波转换,波包分解的模型。此外,对人类神经界面操作员的控制效应的最常见鉴定方法(识别)的比较分析,即,判别分析的方法,参考矢量的方法,非线性贝叶斯分类器,邻居的分类器,人造神经网络的分类器。神经界面技术的研究为研究人员提供了更多的基础,以选择神经接口系统的数学,软件和硬件,并为新版本的开发提供了提高的准确性,可靠性和可靠性。
医学是深度学习模型的重要应用领域。该领域的研究是医学专业知识和数据科学知识的结合。在本文中,我们引入了一个开放的三维颅内动脉瘤数据集 IntrA,而不是二维医学图像,这使得基于点和基于网格的分类和分割模型的应用成为可能。我们的数据集可用于诊断颅内动脉瘤和提取颈部以进行医学和深度学习其他领域(如正常估计和表面重建)的夹闭手术。我们通过测试最先进的网络提供了一个大规模分类和部分分割的基准。我们还讨论了每种方法的性能,并展示了我们数据集的挑战。发布的数据集可以在这里访问:https://github.com/intra3d2019/IntrA。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
帕金森运动症状与基底神经节中病理上增加的β振荡有关。虽然药理学治疗和深脑刺激(DBS)降低了这些病理振荡,并随着运动性能的提高而降低了这些病理振荡,但我们着手探索神经反馈作为内源性调节方法。我们通过植入的DBS电极实施了病理性亚丘脑β振荡的实时处理,以提供深脑电气神经反馈。患者在训练后几分钟内通过视觉神经反馈进行了视觉控制的β振荡活动。在一次单小时的训练中,β振荡活动的减少逐渐变得更强大,我们观察到了运动性能的提高。最后,即使去除视觉神经反馈后,对深脑活动的内源性控制也是可能的,这表明在短期内保留了神经反馈获得的策略。此外,我们观察到2天后学习的心理策略在没有神经反馈的情况下进行了改善。进一步训练深脑神经反馈可能会通过使用神经反馈优化的策略来改善症状控制,从而为帕金森患者提供治疗益处。
因此,下一个提到的结果遵循。基于通过实验测量左手和右手拇指运动过程中大脑电活动获得的EEG信号,我们获得了用于训练集合随机森林算法的输入和输出数据,该算法是通过Scikit-Learn库的软件工具实现的。使用Joblib库的软件工具,可以通过将N_JOBS HyperParameter的值设置为-1时在物理内核和计算机流程上训练集合的随机森林算法时并行化计算。基于DASK库的软件工具,将并行计算分布在群集计算机系统的物理核心及其流中,这使得组织高性能计算以训练集合随机森林算法。结果,根据质量指标:准确性,ROC_AUC和F1评估了创建算法,软件 - 硬件计算管道的质量。所有这些一起制作
在冈比亚期½研究中,没有证据表明给予生物PCV(10值)会干扰对共同管理的五价疫苗的任何成分的免疫反应。在冈比亚第三阶段的研究中,在3剂原发性疫苗接种序列(6周,10周和14周)中,所有EPI疫苗在治疗组之间引起的免疫反应的不耐受性证明了所有EPI疫苗(即,全细胞pentavalent疫苗(DTWP-HIB-HIB-HIB)疫苗接种疫苗或疫苗接种)口服轮状病毒疫苗。基于冈比亚EPI时间表(麻疹 - 鲁贝拉疫苗和黄热病病毒疫苗)的标准EPI疫苗与研究疫苗的加强剂量共同管理。这些共同管理的EPI疫苗证明了免疫反应的不介绍性。While there are no known published data on co- administration of other pneumococcal conjugate vaccine with yellow fever virus vaccine, the high seroresponse rate to yellow fever in the Pneumococcal Polysaccharide Conjugate Vaccine (Adsorbed) (10-valent) group indicates that Pneumococcal Polysaccharide Conjugate Vaccine (Adsorbed) (10值)不会干扰对黄热病病毒疫苗的免疫反应。
神经结构表示是脑图或模型样结构,在结构上类似于它们所代表的内容。这些表示绝对是“认知神经科学革命”的核心,因为它们是与革命者的机械承诺兼容的唯一类型。至关重要的是,这些同样的承诺必须在神经元活性的漩涡中观察到结构表示。在这里,我认为,无论观察的时空尺度如何,我们的神经元活性中都没有观察到结构表达。我的论点首先引入了“认知神经科学革命”(第1节),并勾勒出对结构表现形式的突出,广泛采用的说法(§2)。然后,我将咨询各种在各种时空尺度上描述我们的神经元活动的报告,认为它们都没有报告存在结构表示的存在(§3)。在对我的分析(第4节)偏转了某些直觉异议之后,我将得出的结论是,在没有神经结构表达的情况下,代表性和机制不能融合在一起,因此“认知神经科学革命”被迫放弃其承诺之一(第5节)。
脑机接口(BCI)正在从医疗领域扩展到娱乐、健康和营销领域。然而,随着消费者神经技术变得越来越流行,由于脑电波数据的敏感性及其潜在的商品化,隐私问题也随之出现。隐私攻击已被证明,而人工智能在脑语音和脑图像解码方面的进步带来了一系列独特的新风险。在这个领域,我们进行了第一项用户研究(n=287),以了解人们的神经隐私期望及其对神经技术影响的了解。我们的分析表明,虽然用户对这项技术感兴趣,但隐私是影响其可接受性的关键问题。结果强调了同意的重要性以及在神经数据共享方面实施有效透明度的必要性。我们的研究结果为分析当前隐私保护机制的漏洞提供了基础,并为如何设计隐私友好的神经技术的讨论做出了贡献。