摘要 — 随着摩尔定律走向极限,可用于处理应用程序的计算能力的增长速度也同样停滞不前。这意味着机器人、人工智能和高性能空间计算等计算密集型任务需要创新的方法来满足其不断增长的计算需求。解决计算瓶颈的一种创新方法是将计算和内存结合在一起,而不是冯·诺依曼计算模型,在基于事件的异步计算范式中具有更高的并行度。神经形态计算就是这样一种从大脑中汲取灵感的范式。能源和计算效率、异步和基于事件的处理是神经形态计算的显著特征,是计算密集型任务值得探索的领域。在本文中,作者探讨了神经形态计算在机器人领域的可能性和好处,并确定了可能有益于机器人领域的可能研究方向。
神经形态计算是开发能量有效和高性能的人工智能系统的有希望的范式。基于低功耗,非挥发性和高速开关等基于氯烯烯烃(Linbo 3)的烯烃(Linbo 3)的独特特性,使其成为神经形态系统中突触仿真的理想候选者。这项研究调查了基于Linbo 3的回忆录的潜力,通过探索其突触行为并优化设备参数来彻底改变神经形态计算,并利用Linbo 3基于Linbo 3的回忆录的潜力来创建效率和高性能神经计算机系统。通过实现有效和高速神经网络,该文献综述旨在为能够应对复杂的现实世界挑战的创新人工智能系统铺平道路。从本研究中获得的结果对于未来的研究人员和工程师至关重要,致力于设计和实施基于Linbo 3的神经形态计算体系结构。
摘要来自不同模式的感觉信息(例如触摸和视觉)的集成对于执行决策,学习和记忆等行为功能的生物具有至关重要的。使用电子支持的人工实施人类多感知感知对于实现有效的人类机器相互作用具有重要意义。由于它们与生物突触的结构和功能相似性,回忆录正出现为有希望的纳米版本,用于发展人工神经形态感知。回忆设备可以感觉到多维信号,包括光,压力和声音。他们的传感器计算体系结构代表了有效的多模式感知的理想平台。我们回顾了多模式回忆技术的最新进展及其在具有视觉,嗅觉,听觉和触觉信息的复杂刺激的神经形态感知中的应用。在设备级别上,还引入了操作模型和正在进行的机制。最后,我们讨论了与这一快速发展的研究领域相关的挑战和前景。
在生物体验系统中,信息的感知,转移和处理依赖于分布的平行神经网络来有效解决复杂而非结构化的现实世界问题。1,2,例如,Tac-Tile感觉与机械信号转换为机械感受器的电信号有关。3然后这些电信号通过神经纤维流动到拟南芥,诱导神经递质的释放和突触后膜的发射,最后将它们传递到大脑中以形成触觉。神经编码和学习是在协作和处理外部信息的过程中进行的。受到生物系统的启发,已经开发出神经形态电子来重建和增强智能功能,4
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
摘要BrainScales的第一代,也称为Brainscales-1,是一种用于模拟尖峰神经元网络的神经形态系统。按照“物理建模”原理,其VLSI电路旨在模拟生物学示例的动力学:模拟回路与其电子组件的内在特性产生的时间常数实现神经元和突触。与生物学状态相比,它连续运行,动力学通常匹配10 000。尽管不可避免的模拟可变性和组件故障,但容忍故障设计使其能够实现晶圆尺度的集成。在本文中,我们介绍了Brainscales-1晶圆模块的调试过程,提供了对系统物理组件的简短描述,说明了其组装过程中采取的步骤以及对其进行操作所采取的措施。此外,我们反思了系统的开发过程以及所学到的经验教训,通过模拟晶圆尺度同步释放链来证明其功能,这是迄今为止最大的尖峰网络仿真,迄今为止,最大的尖峰网络模仿和单个突触。
• 通过溅射或 MBE 在 bcc CoFe 或 Fe 磁性电极上,或在非晶态 CoFeB 电极上生长,然后进行退火以重结晶电极,从而形成质地非常好的 MgO 屏障。
简介神经形态计算是指试图模仿大脑信号处理的信号的方式[1]。与基于具有两个分离的内存和处理单元并以顺序操作的von Neumann架构的传统计算机相比[2],大脑过程以并行方式[3,4]。,它在速度和能源效率方面提供了巨大的好处,因为数据传输是造成大部分功耗的原因。克服某些局限性的方法之一是开发可以改善信号处理的新算法[5,6],但是,它仍然需要在内存和处理器之间进行数据传输和限制其效率。在处理这些限制的过程中,在网络中可以实施的人工神经元和突触的开发中,付出了很多努力[1]。基于光子学,即,神经形态光子学,可用光子作为信号载体,以在网络的不同部分之间传递信息[7-12]。多亏了几乎无限的带宽,与标准CMOS技术的兼容性以及几乎为零的功耗,可以进行基本的矩阵乘法,与神经态电子相比,它可以提供巨大的改进。可以通过以光速度在单个波导上将多个信号列入多个信号来实现完整的并行性。同时,光权重可以提供计算的低延迟。通过将这些优点结合起来,至少与电子同行相比,至少有很少的数量级改善。但是,实现此类任务的实现需要仍缺失的新材料平台和低损失体系结构。氮化硅(SIN)是光子整合电路(PIC)技术的普遍材料,因为它与标准CMOS过程兼容[13,14]。它允许在单个芯片上进行具有成本效益的设备和电子和光子组件的协整。此外,与其他材料相比,基于SIN平台的光子设备的特征是对温度漂移的容忍度更高,光学损耗和较低的波长范围操作,较大的波长透明度和改善的串扰值[14]。已经被证明是一个适当的材料平台,用于实现神经网络,表明自由度增加的是设计线性神经元[8,9]。因此,SIN平台可以作为神经形态光子学中的路由层起关键作用[9]。
摘要 神经形态系统是下一代人工智能硬件发展的一条重要途径。机器视觉是人工智能的核心之一,需要低功耗、低延迟、并行计算的系统级支持。神经形态视觉传感器通过模拟生物视网膜的结构和功能,为机器视觉提供了有效的解决方案。光电突触是神经形态视觉传感器的基本单元,它以光为主要手段,实现感光和突触的双重功能。因此,需要开发各种光电突触器件来拓展神经形态视觉系统的应用场景。本文对生物和人工视网膜系统的结构和功能进行了比较,介绍了各种基于低维材料和工作机制的光电突触器件,并全面总结了光电突触作为神经形态视觉传感器的先进应用。最后,简要讨论了该领域的挑战和前景。
这些问题并能够用脑般的表现使序列学习是具有脑启发的学习算法的神经形态硬件。分层时间内存(HTM)是受新皮层工作原理启发的al-gorithm,能够学习和预测元素的连续序列。在先前的研究中,我们表明,在HTM模型的时间内存储算法的生物学上可用版本中,可以将备忘录的设备(一种用于节能的神经形态硬件考虑)被认为是为了节能的神经形态硬件。随后,我们对模拟信号的回忆硬件体系结构进行了模拟研究,该研究可以介绍时间学习算法。我们称之为memspikingtm的架构是基于一个磁带横梁阵列和实现神经元的控制电路和