人类神经科学使用磁共振成像(MRI)来了解大脑的结构和功能并表征某些神经系统和精神疾病。最近已经建立了大型成像队列,其中包括一千个(人类连接项目,Abide,Adni,Imagen,Eu-Aims,1000brains,abcd),向十万个人(Enigma Consortium,UK BiobAbank)。这种同类群是研究流行病学研究(UK Biobank)中许多脑部病理(精神病,成瘾,神经退行性疾病)或危险因素的影响所必需的。相应的数据通常可公开可用。除了这些大型研究外,还获得了较小的数据集,并且在认知神经科学的背景下,越来越频繁地公开(https://openneuro.org)。所有这些研究的数据分析需要医学图像处理工具,而且越来越多的统计分析和学习工具。大脑成像社区已经开发了标准,即大脑成像数据结构(BIDS)(1),以组织数据并促进大规模的统计分析。在此框架中,思维对神经影像学中的统计学习产生了许多贡献,对监督学习,基于模拟的推论和协方差模型估计的兴趣非常兴趣。这些贡献的一部分是通过NiLearn库(http://nilearn.github.io)传播的(2)。niLearn是神经科学生态系统中的关键开源库,它依赖于科学的Python stack(Numpy,Scikit-Learn,Matplotlib)。它非常成功(PYPI上下载50 K)。Nilearn由来自几个国家的许多人贡献,请参见https://github.com/nilearn/nilearn/graphs/contributors。它遵循软件开发方面的最佳实践(详尽的自动化测试,CI,完整的API文档以及叙事文档,API同质性,合理的依赖性,有关技术选择的公开讨论等)该开发由Coredev团队管理,有9个每月开会的成员。开发人员社区非常活跃,因为它在神经频道(Neurostars)等公共渠道上提供了反馈,在GitHub界面上打开问题并提取请求。最后,Mind正在将大量资源投资于临床合作。Specifically, Mind is engaged in a collaborative initiative with the Assistance Publique - Hopitaux de Paris (AP-HP), Institut Pasteur, Sainte Anne, Stanford University and Neurospin, to address clinical scenarios such as brain tumor surgeries, analysis of stroke-induced lesions ( 3 ; 4 ), understand the relationship between brain structure and cognition, or the use of ultra-high field MRI.
先进的脑成像分析方法,包括多元模式分析 (MVPA)、功能连接和功能对齐,在过去十年中已成为认知神经科学的有力工具。这些工具以自定义代码和单独的程序包实现,通常需要不同的软件和语言能力。虽然专家研究人员可以使用,但新手用户面临着陡峭的学习曲线。这些困难源于使用新的编程语言(例如 Python)、学习如何将机器学习方法应用于高维 fMRI 数据以及极少的文档和培训材料。此外,大多数标准 fMRI 分析包(例如 AFNI、FSL、SPM)侧重于预处理和单变量分析,在如何与高级工具集成方面存在空白。为了满足这些需求,我们开发了 BrainIAK (brainiak.org),这是一个开源 Python 软件包,它将几种尖端的、计算效率高的技术与其他 Python 包(例如 Nilearn、Scikit-learn)无缝集成,用于文件处理、可视化和机器学习。为了传播这些强大的工具,我们开发了用户友好的教程(Jupyter 格式;https://brainiak.org/tutorials/),以便更广泛地学习 BrainIAK 和 Python 中的高级 fMRI 分析。这些材料涵盖的技术包括:MVPA(模式分类和表征相似性分析);并行探照灯分析;背景连接;全相关矩阵分析;受试者间相关性;受试者间功能连接;共享响应建模;使用隐马尔可夫模型进行事件分割;以及实时 fMRI。对于长时间运行的作业或大内存需求,我们提供有关高性能计算集群的详细指导。这些笔记本已在多个站点成功测试,包括作为耶鲁大学和普林斯顿大学课程的问题集以及各种研讨会和黑客马拉松。这些材料是免费共享的,希望它们成为开源软件和教育材料池的一部分,用于大规模、可重复的 fMRI 分析和加速发现。