摘要:已有多项旨在评估智力生产力和专门设计的任务的研究。然而,结果可能无法反映实际的智力生产力,因为设计的任务与办公室工作不同。同时,办公室工作人员有两种心理状态(工作和暂时休息状态),它们在脑力工作过程中交替变化。如果能检测到员工的心理状态,就能更准确地衡量生产力。在本研究中,作者旨在通过测量脑力工作时的生理指标(如脑电图、心电图和眼外肌和眼轮匝肌的肌电图)来开发一种检测暂时休息状态的方法。从这些测量指标中,作者提取了 6 个特征,即脑电波和脑电波、心率的低频和高频波以及眨眼和扫视眼球运动的间隔。它们被用来通过马哈拉诺比斯判别分析来检测暂时休息状态。实验结果显示,检测准确率为80.2%。该结果显示,生理指标作为心理状态检测方法之一具有可行性。
摘要:眨眼分析有助于了解健康受试者的生理机制以及神经系统疾病的病理生理机制。迄今为止,眨眼是通过各种神经生理技术来评估的,包括肌电图 (EMG) 记录和光电运动分析。我们使用一种新的便携式设备 EyeStat(第 3 代,blinktbi, Inc.,美国南卡罗来纳州查尔斯顿)记录了眨眼运动学,并将测量结果与使用传统实验室技术获得的数据进行了比较。16 名健康成年人使用 EyeStat 设备和 SMART 运动分析系统(BTS,意大利米兰)进行了自愿、自发和反射性眨眼记录。在眨眼记录过程中,使用表面电极从眼轮匝肌记录 EMG 活动。眨眼数据通过专用软件进行分析,并通过重复测量方差分析进行评估。皮尔逊积差相关系数可用于评估 EyeStat 设备、SMART 运动系统和 EMG 数据之间可能存在的关联。我们发现 EyeStat 和 SMART 系统记录期间收集的 EMG 数据并无差异。使用 EyeStat 记录的眨眼数据与使用 SMART 系统获得的结果呈线性关系(r 范围从 0.85 到 0.57;p 范围从 <0.001 到 0.02)。这些结果表明,与标准技术相比,通过这种便携式设备进行眨眼分析具有较高的准确性和可靠性。EyeStat 可以使在研究活动和日常临床实践中记录眨眼变得更加容易,从而可以在门诊环境中对健康受试者和患有神经系统疾病的患者进行大规模研究。
