(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 1 月 9 日发布。;https://doi.org/10.1101/2021.01.08.426005 doi:bioRxiv preprint
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印版的版权持有人于2021年1月13日发布。 https://doi.org/10.1101/2021.01.08.426005 doi:biorxiv preprint
C9ORF72 基因内含子 1 中的六个核苷酸重复扩增是影响肌萎缩侧索硬化症和额颞叶痴呆症患者的最常见的基因突变。重复扩增的双向转录会产生正义和反义重复 RNA,这些 RNA 随后可以在所有阅读框架中翻译,从而产生具有独特末端的六种不同的二肽重复 (DPR) 蛋白。这些蛋白质在 C9ORF72 重复扩增中的准确翻译起始位点仍然难以捉摸。我们使用 CRISPR-Cas9 基因组编辑和空间阻断反义寡核苷酸 (ASO) 研究反义重复 RNA 中的不同 AUG 密码子对 C9ORF72 扩增载体运动神经元和淋巴母细胞中 DPR 蛋白、poly(GP) 和 poly(PR) 产生的贡献。然后,我们利用针对 C9ORF72 正义重复 RNA 的 ASO 来检查正义或反义 RNA 是否是 poly(GP) 蛋白的主要来源 - 这个问题存在相互矛盾的证据。我们发现这些 ASO 减少了预期的正义 RNA 靶标,但也减少了反义 RNA,从而阻止了 poly(PR) 的产生。我们的数据强调了反义 CCCCGG 重复扩增之前的序列对于反义 DPR 蛋白合成的重要性,并支持使用正义 C9ORF72 ASO 来防止正义和反义依赖性 DPR 蛋白在 C9ORF72 ALS/FTD 中的积累。
2023年10月30日美国环境保护局EPA案卷中心,邮件Cod 2822it 1200宾夕法尼亚大街,西北华盛顿特区,华盛顿特区20460,以电子方式提交给www.regulations.gov re:www.gregulation.gov re:对epa-hq-opp-opp-opp-opp-2021-0271的评论。 decemlineata -specific recombinant double- stranded interfering Oligonucleotide GS2) Center for Food Safety (CFS) appreciates the opportunity to comment on EPA's proposed decisions to unconditionally register the new active ingredient, Ledprona ( Leptinotarsa decemlineata -specific recombinant double-stranded interfering Oligonucleotide GS2), in one technical grade (LEDPRONA技术)和一种最终用途产品(Calantha)。要求的注册将使Ledprona在全国范围内应用土豆。
研究DNA寡核苷酸性能和寻找新结构识别方法是现代科学最重要的任务。相信,当人类基因组测序的成本变得足够低以实施广泛实施时,将实施个性化的医学概念[1,2]。在这种情况下,大多数现代遗传数据分析方法基于基因组测序,进而取决于检测每个核苷酸寡核苷酸增加的技术方法[1,2]。但是,应该注意的是,测序是用于寡核苷酸鉴定和分析的多核苷酸技术,而寡核苷酸序列的性能可以整体鉴定[3,4]。为此,我们需要研究寡核苷酸分子的性能,其中可能包括DNA的介电和磁性。在此之前表明,基于实验电导率数据的比较[1],核苷酸组合和寡核苷酸的长度在这些生物分子的介电性能形成中起着基本作用,因此,与1个寡核苷酸 - 1个相关的电势通道的电气序列相关的序列,从而研究了con- sns con- con- con- con- con- con- con- con- con- con- con- con- con- con- con- - 生物分子。寡核苷酸应用于SNS表面,反过来促进了总电容和电感,从而可以依靠伏特 - 安培特征研究中识别和确定其介电常数。这项研究的重点是这个问题 - 它没有声称要进行完整的寡核苷酸测序,但可以提供有关但是,由于电特性与磁性特性相互作用,因此有趣的是,是否可以使用其磁性特性通过非接触式方法研究寡核苷酸。
ADAR酶家族的腺苷脱氨酸是一个自然过程,它在通过Messenger RNA时编辑了遗传信息。 腺苷转化为mRNA中的inosine,该基碱在翻译过程中被解释为鸟苷。 意识到这项活动对治疗剂的潜力,许多研究人员开发了将ADAR活动重定向到新目标的系统,该系统通常未进行编辑。 These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-CAS或RNAi。 迄今为止,SDRE主要用于纠正遗传突变。 在这里,我们认为这些应用不是理想的SDRE,主要是因为RNA编辑是短暂的,遗传突变不是。 相反,我们建议可以使用SDRE来调整细胞生理,以实现治疗上有利的临时结果,尤其是在神经系统中。 这些包括操纵伤害性神经回路中的兴奋性,废除特定的磷酸化事件,以减少与神经变性相关的蛋白质聚集或减少神经性疤痕,从而抑制神经再生或增强G蛋白耦合受体信号的抑制,从而增加象征性障碍性和粘贴性的神经偶联受体信号。ADAR酶家族的腺苷脱氨酸是一个自然过程,它在通过Messenger RNA时编辑了遗传信息。腺苷转化为mRNA中的inosine,该基碱在翻译过程中被解释为鸟苷。意识到这项活动对治疗剂的潜力,许多研究人员开发了将ADAR活动重定向到新目标的系统,该系统通常未进行编辑。These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-CAS或RNAi。迄今为止,SDRE主要用于纠正遗传突变。在这里,我们认为这些应用不是理想的SDRE,主要是因为RNA编辑是短暂的,遗传突变不是。相反,我们建议可以使用SDRE来调整细胞生理,以实现治疗上有利的临时结果,尤其是在神经系统中。这些包括操纵伤害性神经回路中的兴奋性,废除特定的磷酸化事件,以减少与神经变性相关的蛋白质聚集或减少神经性疤痕,从而抑制神经再生或增强G蛋白耦合受体信号的抑制,从而增加象征性障碍性和粘贴性的神经偶联受体信号。
ADAR酶家族的腺苷脱氨酸是一个自然过程,它在通过Messenger RNA时编辑了遗传信息。 腺苷转化为mRNA中的inosine,该基碱在翻译过程中被解释为鸟苷。 意识到这项活动对治疗剂的潜力,许多研究人员开发了将ADAR活动重定向到新目标的系统,该系统通常未进行编辑。 These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-CAS或RNAi。 迄今为止,SDRE主要用于纠正遗传突变。 在这里,我们认为这些应用不是理想的SDRE,主要是因为RNA编辑是短暂的,遗传突变不是。 相反,我们建议可以使用SDRE来调整细胞生理,以实现治疗上有利的临时结果,尤其是在神经系统中。 这些包括操纵伤害性神经回路中的兴奋性,废除特定的磷酸化事件,以减少与神经变性相关的蛋白质聚集或减少神经性疤痕,从而抑制神经再生或增强G蛋白耦合受体信号的抑制,从而增加象征性障碍性和粘贴性的神经偶联受体信号。ADAR酶家族的腺苷脱氨酸是一个自然过程,它在通过Messenger RNA时编辑了遗传信息。腺苷转化为mRNA中的inosine,该基碱在翻译过程中被解释为鸟苷。意识到这项活动对治疗剂的潜力,许多研究人员开发了将ADAR活动重定向到新目标的系统,该系统通常未进行编辑。These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-CAS或RNAi。迄今为止,SDRE主要用于纠正遗传突变。在这里,我们认为这些应用不是理想的SDRE,主要是因为RNA编辑是短暂的,遗传突变不是。相反,我们建议可以使用SDRE来调整细胞生理,以实现治疗上有利的临时结果,尤其是在神经系统中。这些包括操纵伤害性神经回路中的兴奋性,废除特定的磷酸化事件,以减少与神经变性相关的蛋白质聚集或减少神经性疤痕,从而抑制神经再生或增强G蛋白耦合受体信号的抑制,从而增加象征性障碍性和粘贴性的神经偶联受体信号。
由于寡核苷酸合成是一个连续过程,如果步骤效率低于 100%,则目标寡核苷酸的理论产量会随着序列长度的增加而降低。顺序固相寡核苷酸合成技术适用于长度最多约为 150 nt 的寡核苷酸,每一步都有可能因副反应和原材料杂质而引入失败序列。据估计,每个合成循环的效率约为 98.5-99%。3 如表 1 所示,即使步骤效率高达 99%,在 100 个循环后,总理论产量也只有 37%。由于失败序列可能对目标特异性有害,因此应在配制前通过纯化将其去除。序列杂质可能难以去除;但是,反相 HPLC (RP-HPLC) 等强大的纯化技术可用于各种序列和长度的寡核苷酸。
Paul Zamechnik和Mary Stephenson在1978年首次在Rous肉瘤病毒上发现了使用修饰的反义寡核苷酸的部分可能性(Zamecnik和Stephenson,1978年)。一年后,当海伦·唐尼斯·凯勒(Helen Donis-Keller)提出的结果表明,RNase H在RNA中切割RNA - DNA异质振动台时的结果(Donis-Keller,1979年)。花了三十年的时间才以未修饰的反义寡核苷酸的形式以未修饰的反义DNA(CUAD)生物技术(Oberemok,2008)和寡核苷酸杀虫剂(Brie -off y,Olinscides或DNA昆虫剂使用植物保护剂)(MAN 22)(MAN 2)(MAN)(MAN)(han)(han)(han)(oligonucletide)(Oberemok,2008年)(Oberememok,2008)(Oberemok,2008年),以概念上的形式应用了三十年的时间。 Gal'chinsky等人,2024年; Trilink Biotechnologies,2024)(图1)。在2008年,在未修饰的反义DNA寡核苷酸和接触杀虫剂之间放置了一个相等的迹象(Oberemok,2008)。到那时,磷氧矿体DNA合成的发展(Hoose等,2023)使得以负担得起的价格在大量害虫上合成和测试反义DNA碎片。寡核苷酸杀虫剂在海绵状的蛾lymantria dispar进行了第一次测试。靶向IAP基因的反义DNA寡核苷酸的接触应用在无杆状病毒和LDMNPV感染的海绵状蛾毛虫(Oberemok等,2016,2017; Kumar等,2022)上表现出了其有效性。在2019年,发生了三个重要的变化,这些变化显着推动了Cuad Biotechnology的发展。第二,寡核苷酸杀虫剂的长度成功降低至11首先,虫害的rRNA开始用作寡核苷酸杀虫剂的靶标(这导致寡核苷酸杀虫剂的效率提高,因为RRNA占细胞中所有RNA的80%,因此)(Oberemok等)(Oberemok等)(Oberemok等)。
胶质母细胞瘤 (GBM) 是所有原发性脑肿瘤中最恶性的一种,每年导致全球约 200,000 人死亡。GBM 的标准疗法包括手术切除,然后进行以替莫唑胺为基础的化疗和/或放疗。通过这种治疗,GBM 患者在初次诊断后的平均生存期仅为 15 个月。因此,迫切需要新的、更好的 GBM 治疗方式。越来越多的证据表明,非编码 RNA (ncRNA) 作为基因表达的调节剂发挥着关键作用。长链非编码 RNA (lncRNA) 和微小 RNA (miRNA) 是健康和疾病中研究最多的 ncRNA。几乎所有类型的肿瘤,包括 GBM,都存在 ncRNA 失调。在 GBM 细胞系和 GBM 肿瘤样本中已鉴定出几种失调的 miRNA 和 lncRNA。其中一些已被提议作为诊断和预后标志物,以及作为 GBM 治疗的靶点。大多数基于 ncRNA 的疗法使用寡核苷酸 RNA 分子,而这些分子在循环中的寿命通常较短。纳米粒子 (NP) 旨在增加寡核苷酸 RNA 的半衰期。血脑屏障 (BBB) 的存在不仅是 RNA 寡核苷酸面临的另一个挑战,也是针对大脑相关疾病的疗法面临的另一个挑战。BBB 是保护大脑免受不良物质侵害的解剖屏障。尽管一些 NP 已在其表面衍生化以穿过 BBB,但目前还没有最佳的 NP 来将寡核苷酸 RNA 递送到大脑中的 GBM 细胞中。在这篇综述中,我们首先描述了 GBM 疗法的当前治疗方法。接下来,我们将讨论被建议作为 GBM 治疗靶点的最相关的 miRNA 和 lncRNA。然后,我们比较了目前用于 RNA 寡核苷酸输送的药物输送系统(纳米载体/NPs)、将药物输送通过 BBB 所面临的挑战以及克服这一障碍的策略。最后,我们归类了研究应重点关注的关键点,以便设计出用于将药物输送到大脑的最佳 NPs;从而将基于寡核苷酸 RNA 的疗法从实验室转移到临床环境。