1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。 应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。 但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。 关于线性,电极上的电压是电流通过电极的非线性函数。 线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。 关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。 对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。 因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。 最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。 该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。关于线性,电极上的电压是电流通过电极的非线性函数。线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。为此,使用了非零均值随机相多电流激发,并且从电压响应的光谱中估算了沿轨迹的时间变化阻抗。
Liu 1 , Kun Qian 4 , Mesfin Tsige 4 , Qiuyu Zhang 3,* , Jinghua Guo 2,* , and Jieshan Qiu 1,5,*
摘要:在过去的几十年中,X 射线吸收光谱 (XAS) 已成为探测非均相催化剂结构和成分、揭示活性位点的性质以及建立催化剂结构模式、局部电子结构和催化性能之间联系的不可或缺的方法。本文将讨论 XAS 方法的基本原理,并描述用于解读 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 光谱的仪器和数据分析方法的进展。本文将介绍 XAS 在非均相催化领域的最新应用,重点介绍与电催化相关的示例。后者是一个快速发展的领域,具有广泛的工业应用,但在实验表征限制和所需的高级建模方法方面也面临着独特的挑战。本综述将重点介绍使用 XAS 对复杂的现实世界电催化剂获得的新见解,包括其工作机制和化学反应过程中发生的动态过程。更具体地说,我们将讨论原位和原位 XAS 的应用,以探测催化剂与环境(载体、电解质、配体、吸附物、反应产物和中间体)的相互作用及其在适应反应条件时的结构、化学和电子转变。
电池技术不断进步,以降低成本提高能量密度、稳定性和安全性。如今,钴/镍基金属氧化物(如 LiCoO 2 、LiNi x Co y Mn z O 2 和 LiNi 0.53 Co 0.3 Al 0.17 O 2 )占据了商用锂纽扣电池正极材料的主导地位。1 然而,为了降低成本并实现更好的性能,2 研究人员继续寻找潜在的替代电极。层状过渡金属二硫属化物(MX 2 ;M = 过渡金属,X = S、Se、Te)为在正极中插入主体物质提供了另一个有希望的方向。自从 Whittingham 于 1976 年报道了二硫化钛 (TiS 2 ) 在碱金属中的动力学有利的插入反应以来,人们对其进行了广泛的研究。3 由于其良好的电导率、4 比 LiCoO 2 更高的能量密度和快速的循环速度,4 TiS 2 现在被认为是 LIBs 和超越锂离子(如 Na、K 和 Mg)在高功率系统中应用的有力竞争者。5 – 7 此外,TiS 2 为全固态电池的金属锂阳极结合提供了可能性,并可作为锂硫电池中锂多硫化物的吸收剂,以提高电池性能。8
摘要:我们引入了一个灵活的显微镜全纤维 - 光学拉曼探针,该探针可以嵌入设备中以启用Operando的原位光谱。便捷的探针由嵌套的反无核核纤维与集成的高折射率钛酸稀盐Microlens组成。泵激光785 nm激发和近红外收集是独立表征的,表明了全宽度最大最大1.1μm的激发点。由于这比有效的收集区小得多,因此对收集的拉曼散射的影响最大。我们的表征方案提供了适合使用纤维类型和微球的各种组合来测试这些纤维探针功效的合适方案。在表面增强的拉曼光谱样品和铜电池电极上进行的拉曼测量结果证明了纤维探针的生存能力,可以替代散装视神经拉曼显微镜,从而与10个目标相当地收集,从而为在诸如岩石电池监控等应用中的Operando Raman研究铺平了道路。关键字:空心核纤维,拉曼,Microlens,原位,纤维探针,光子纳米夹■简介
摘要:环境压力X射线光电子光谱(APXPS)与同时的电气测量结合,并由密度功能理论计算支持,以研究Operando动力学中基于基于气体的Tungsten二硫化物(WS 2)的感应机制。这种方法允许在现实的工作条件下的表面电势变化与WS 2传感活动层的电阻率之间的直接相关性。着眼于第2和NH 3的有毒气体,我们同时证明了氧化或还原剂之间的明显化学相互作用与WS 2活性层之间的明显化学相互作用及其对传感器响应的影响。The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations.该方法适用于NH 3浓度100、230和760和14 ppm的NO 2浓度,为未来的APXPS研究建立了基准,用于在操作系统条件下进行快速获取时间和快速获取时间和1:1的电反应和光谱数据之间的相关性。我们的发现有助于更深入地了解2D过渡金属二分法中的传感机制,为针对各种工业应用和具有低能消耗的无线平台优化化学传感器铺平了道路。关键字:操作光谱,带弯曲,表面电势,密度功能理论,气体传感
通过广泛部署整个(网格)和中级(车辆)尺度的储能技术,可以实现向较小化石燃料依赖化石燃料依赖能源经济的过渡。鉴于其效率和多功能性,目前正在考虑使用可充电电池,这些电池面临着不同的技术要求集(例如,在成本和寿命方面),与它们在便携式电子产品中的使用相比。在全球范围内正在研究研究,以改善当前可用的电池化学,例如锂离子,同时在成本和可持续性方面寻找具有高能量密度和/或优势的新概念。电池本质上复杂的设备,1个掌握材料科学,尤其是特征技术,对于在两个研究方向上取得进步至关重要。测量值(在电池内部)或操作数(在细胞功能期间进行)最近在光谱/空间分辨率方面提高并改善了无数技术的频谱/空间分辨率,包括差异和广泛的镜头和成像技术(甚至是其组合)。不同的长度尺度需要探测:从°A到Nm的表面/接口,以及从数十nm到m m的电极材料,以达到完整电极的MM和完整的
通过广泛部署整个(网格)和中级(车辆)尺度的储能技术,可以实现向较小化石燃料依赖化石燃料依赖能源经济的过渡。鉴于其效率和多功能性,目前正在考虑使用可充电电池,这些电池面临着不同的技术要求集(例如,在成本和寿命方面),与它们在便携式电子产品中的使用相比。在全球范围内正在研究研究,以改善当前可用的电池化学,例如锂离子,同时在成本和可持续性方面寻找具有高能量密度和/或优势的新概念。电池本质上复杂的设备,1个掌握材料科学,尤其是特征技术,对于在两个研究方向上取得进步至关重要。测量值(在电池内部)或操作数(在细胞功能期间进行)最近在光谱/空间分辨率方面提高并改善了无数技术的频谱/空间分辨率,包括差异和广泛的镜头和成像技术(甚至是其组合)。不同的长度尺度需要探测:从°A到Nm的表面/接口,以及从数十nm到m m的电极材料,以达到完整电极的MM和完整的
第四族元素及其氧化物,如硅、锗、锡和二氧化硅,具有比商用石墨阳极高得多的理论容量。然而,这些材料在循环过程中体积变化很大,导致严重的结构退化和容量衰减。Al 2 O 3 涂层被认为是提高高容量阳极材料机械稳定性的一种方法。为了直接了解 Al 2 O 3 涂层的效果,我们使用原位聚焦离子束扫描电子显微镜 (FIB-SEM) 监测了循环过程中涂层/未涂层 Sn 颗粒的形貌变化。结果表明,Al 2 O 3 涂层提供局部保护并减少体积膨胀早期裂纹的形成。3nm Al 2 O 3 涂层比 10nm 和 30nm 涂层提供更好的保护。尽管如此,由于体积膨胀较大,Al 2 O 3 涂层无法防止循环后期的粉碎。
在两个电极之间传输。已经对锂离子电池进行了广泛的研究,但几个关键过程,主要与它们对电极的反应性有关,但仍有几个关键过程尚待充分说明。[1]没有电解质在锂离子电池的负石墨电极上本质上是稳定的,而可逆细胞化学反应强烈依赖于固体电解质相(SEI)的形成。SEI是一个NM薄的多相复合层,通常是在锂离子电池的第一个电荷/放电周期之后从电解质的降解产物中形成的石墨。尽管几十年前已经建立了关于SEI重要性的一般性感,但其形成和操作机制仍在激烈地进行辩论。尽管如此,通常观察到SEI的性能在很大程度上取决于使用的电溶剂。可行的锂离子电池电解质上的溶剂上的必需需求是高电介质构造,低粘度,较大的液体温度间隔和与所有细胞成分接触的稳定性。[1]