第一周:RFIC 和通信电子简介,(RF 微电子学书籍和高频集成电路书籍的第 2 章) 第二周:器件建模(MOS 和 BJT RF 器件模型、晶体管操作、晶体管截止频率),(高频集成电路书籍的第 4 章) 第三周:器件建模、无源元件(电感器、电容、电阻性能和 RF 模型,(高频集成电路书籍的第 4 章和 RF 微电子学书籍的第 7 章) 其他一些参考文献: “MOS 晶体管的操作和建模”Yannis Tsividis、Mc-Graw Hill “用于 RFIC 设计的 MOS 晶体管建模”,Enz 等,IEEE Transaction on Solid- State Circuits,第 35 卷,2000 年 第 4 周:匹配网络的阻抗匹配和品质因数, 第五周:放大器的匹配网络、L 匹配、Pi 匹配、分布式放大器、反馈网络第六周 低噪声放大器(LNA)设计,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 7 周:带 CS、CG 级、具有电感衰减的 LNA,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 8 周:电路噪声分析(热噪声/闪烁噪声)噪声系数 第 9 周:线性和非线性(IM3- IM2)1dB 压缩、互调失真、截取点、交叉调制。期中考试 I 第 10 周:混频器和频率转换(混频器噪声)、无源转换、有源转换、I/Q 调制 PPF,(《高频集成电路》一书的第 9 章、《射频微电子学》一书的第 6 章) 第 11 周:不同的发射器/接收器架构。外差、同差、镜像抑制比 第 12 周:VCO 和振荡器:VCO 基础和基本原理、振荡器的反馈视图、交叉耦合振荡器(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章)。 第 13 周:具有宽调谐范围和变容二极管 Q 值限制的压控振荡器、相位噪声概念和分析、低噪声 VCO 拓扑(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 期中考试 II 第 14 周:用于 SNR、BER、EVM 和不同调制的收发器架构(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 第 15 周:具有不同通信调制/解调的收发器架构和设计示例、注意事项/讲座 29 30 /发射机和接收机的一般考虑
公差,高增益,极化维持和低分散体3。纤维被验证和活跃,以进行功能和鲁棒性4。纤维振荡器的设计,制造和验证5。纤维放大器的设计,制造和验证6。由纤维制成的纤维梳子设计,制造和验证7。梳子被验证用于辐射公差
因此,随着时钟速度的增加,需要更加间隔的多相时钟。常规的CMOS环振荡器已被普遍用于这些应用程序,因为它们由于高速操作和简单的结构而可以提供多相时钟信号。在常规环振荡器中,振荡频率取决于单个延迟之和的两倍的倒数。此外,传统环振荡器中的最小龙头间距不能小于两个逆变器延迟。在这里,我们必须添加更多的逆变器才能获得更多的输出阶段,从而降低了最大工作频率。要获得一个较小的间距,由一系列耦合环振荡器组成的阵列振荡器,可以将延迟分辨率延迟到逆变器延迟,从而提出了将逆变器延迟除以除以环的数量。因为该电路基于阵列结构,但是,多相输出的数量仅限于环中阶段的倍数。
摘要 - 环振荡器是集成电路的必要块,充当数字时钟生成器。该振荡器有几种进度技术。然而,最适当的环振荡器的拓扑选择需要对电气特征进行权衡的分析。本文介绍了两个拓扑之间的比较研究,以实施环振荡器。每个拓扑都使用特定的延迟单元格:CMOS逆变器或差分对放大器。目标输出频率为10.44 MHz,振荡器以130 nm的技术实现。拓扑是根据功率耗散,硅面积和制造过程变化的比较。电气模拟表明,逆变器环振荡器具有较小的功耗和较小的硅面积。在另一侧,差分放大器振荡器对过程变化的敏感性较小。这些结果可以帮助指导设计师确定适合集成电路设计中系统要求的最佳拓扑。索引项 - 逆变器,差分对,环振荡器,人体动作过程变化。
摘要 — 5G 标准的采用要求新的无线设备不仅支持传统的 RF 频段,还支持高达 40GHz 及以上的 mmW 频率。这种 mmW 硬件通常需要窄带 LC 谐振电路才能实现高效、低噪声运行。对于宽调谐的软件定义系统,由于缺乏实用的固态可调电感元件,无法实现多倍频程 LC 调谐,从而限制了软件定义无线电的 mmW 性能。在本文中,我们首次在未经修改的 28nm FDSOI CMOS 中提出了一种新型、紧凑、集中/分布式 LC 等效谐振器,该谐振器能够在超过四个倍频程的频率上进行连续调谐,同时保持实用的品质因数。该谐振器用于实现可从 3.1 GHz 调谐至 51GHz 以上的交叉耦合 LC VCO,所需面积小于 0.208mm 2,功率小于 8mW,并实现多倍频程可调 mmW VCO 的 -198.2dBc/Hz 的峰值 FOM T 最先进的水平。关键词 — 可调电路、数控振荡器、压控振荡器、毫米波、宽带、可调滤波器、5G、FMCW 雷达
振荡器电路用于为简单如手表的系统和复杂如卫星的系统提供准确可靠的时钟信号,这对于长距离通信非常重要。构建振荡器电路的方法有很多种,可以使用无源或有源部件。每种方法都有利弊,但在当前的移动通信发展水平上,最重要的是互操作性和低功耗。这种需求推动了紧凑型、电池供电电子产品的发展,而基于超大规模集成 (VLSI) 的环形振荡器提供了理想的解决方案。这些振荡器应该消耗更少的功率、具有较大的调谐范围并且体积小巧。本文介绍了一种用作压控振荡器的新型互补金属氧化物硅 (CMOS) 环形振荡器。建议的架构通过结合它们的组成部分,充分利用了电流不足型环形振荡器和负偏斜延迟的优点。所提出的架构的控制电压为 1.15 V,电源电压为 2 V,可产生 9.35 GHz 主频,输入和输出之间的谐波失真为 13.82%。通过在设计中仔细选择无源元件,所提出的架构可以实现需要高频和低功耗的基于 5G 的应用。
8200 是一款坚固耐用的铷原子振荡器,专为地面战术、舰载和机载应用而设计,这些应用需要在各种环境条件下实现卓越的频率稳定性。先进的通信、导航和瞄准系统需要精密振荡器,这些振荡器能够承受各种操作环境,同时将频率精度和稳定性的下降降至最低。8200 以卓越的相位噪声和出色的短期和长期频率稳定性支持这些应用。
机械振荡器是日益多样化的精密传感应用中必不可少的组件,包括引力波探测 ( 1 )、原子力显微镜 ( 2 )、腔光力学 ( 3 ) 和弱电场测量 ( 4 )。从量子力学的角度来看,任何谐振子都可以用一对非交换可观测量来描述;对于机械振荡器,这些可观测量通常是位置和动量。这些可观测量的测量精度受到不可避免的量子涨落的限制,即使振荡器处于基态,这些涨落也会出现。使用“压缩”方法,可以操纵这些零点涨落,同时根据海森堡不确定性关系保留它们的乘积。这种压缩可以提高一个可观测量的测量精度,但代价是另一个可观测量的波动增加(5)。尽管已经在各种物理系统中创建了压缩态,包括电磁场(6)、自旋系统(7)、微机械振荡器(8-10)和单个捕获离子的运动模式(11、12),但利用压缩来增强计量一直具有挑战性。特别是,在检测过程中添加的噪声会限制计量增强,除非它小于压缩噪声。可以通过增加要测量的信号幅度来克服低噪声检测的要求。在光学干涉测量 ( 13 ) 和自旋系统 ( 14 ) 中,已经证明压缩相互作用的逆转可以放大
i. 牛顿力学 ii. 哈密顿力学 iii. 拉格朗日力学 iv. 波动力学 (1) 简正模 (2) 波叠加 (3) 经典谐振子 v. 统计物理学 (1) 热力学定律 (2) 玻尔兹曼分布、泊松分布、二项分布、几何分布 (3) 熵及其与温度和信息的关系 (4) 配分函数 (5) 微正则系综 (6) 正则系综 vi. 相对论 (1) 狭义相对论 (2) 洛伦兹变换 (3) 长度收缩 (4) 时间膨胀 (5) 时空图 (6) 引力 b. 量子物理学
在过去的三十年中,我们看到了时钟和振荡器表征方法的发展。主要进展是在时间域中取得的,但在频域中也取得了重大进展。我们现在有了 CCIR 建议和 IEEE 时钟表征标准。然而,随着我们看到前沿技术的不断推进,我们可以看到对振荡器和时钟进行更严格的表征的需求。环境扰动对时钟和振荡器的影响可能会变得更加重要,因为它会影响长期稳定性。此外,我们看到了对测量系统进行表征的迫切需求。迄今为止,尚无正确表征测量系统的标准。然而,用于比较实验室或远程分离时钟的技术通常可能会限制其频率或时间稳定性。展望未来十年,这些测量问题变得更加重要,因此,显然需要找到表征测量系统的措施。此外,我们需要改进我们表征未来几年预期的先进时钟的能力。与系统定时和同步需求很高的电信行业的紧密联系将对两个领域都有利。本文回顾了时间和频率计量学的一些亮点,提出了一些必要的标准化建议,并提请关注