亚利桑那州立大学的一所分子科学学院,坦佩,亚利桑那州85281,美国b化学和生物化学系,技术策划大学Darmstadt,64287 DARMSTADT,德国Darmstadt,德国c材料系,牛津大学,牛津大学,牛津大学,牛津大学,牛津,牛津,牛津,OX1 3PH,英国,英国。D化学系,伦敦大学学院,伦敦,WC1H 0AJ,英国。 e应用化学和材料部,美国国家标准与技术研究所,博尔德,CO 80305,美国F钻石光源,Harwell Science and Innovation Campus,Didcot,Ox11 0de,英国。 G化学系,分子科学研究中心,伦敦帝国学院,伦敦W12 0BZ,英国皇室校园,英国。 摘要:具有通用公式M n+1 AX N的最大相是分层的碳化物,氮化物和碳依抗碳,具有不同的M 6 x octahedra层的堆叠序列,并取决于n。 几乎没有制备“ 211”最大相(n = 1),而最大n,尤其是n≥3的最大相。 这项工作解决了有关相对新的“ 514”最大阶段的合成条件,结构和化学组成的开放问题。 与文献报告相比,不需要氧化物以形成最大相位,但是需要在1,600°C下进行多个加热步骤。 使用高分辨率X射线衍射,(MO 1-X V X)5 ALC 4的结构进行了彻底研究,Rietveld的细化确认P -6 C 2是最合适的空间组。 SEM/ED和XPS表明,最大相的化学组成为(MO 0.75 V 0.25)5 ALC 4。D化学系,伦敦大学学院,伦敦,WC1H 0AJ,英国。e应用化学和材料部,美国国家标准与技术研究所,博尔德,CO 80305,美国F钻石光源,Harwell Science and Innovation Campus,Didcot,Ox11 0de,英国。G化学系,分子科学研究中心,伦敦帝国学院,伦敦W12 0BZ,英国皇室校园,英国。 摘要:具有通用公式M n+1 AX N的最大相是分层的碳化物,氮化物和碳依抗碳,具有不同的M 6 x octahedra层的堆叠序列,并取决于n。 几乎没有制备“ 211”最大相(n = 1),而最大n,尤其是n≥3的最大相。 这项工作解决了有关相对新的“ 514”最大阶段的合成条件,结构和化学组成的开放问题。 与文献报告相比,不需要氧化物以形成最大相位,但是需要在1,600°C下进行多个加热步骤。 使用高分辨率X射线衍射,(MO 1-X V X)5 ALC 4的结构进行了彻底研究,Rietveld的细化确认P -6 C 2是最合适的空间组。 SEM/ED和XPS表明,最大相的化学组成为(MO 0.75 V 0.25)5 ALC 4。G化学系,分子科学研究中心,伦敦帝国学院,伦敦W12 0BZ,英国皇室校园,英国。摘要:具有通用公式M n+1 AX N的最大相是分层的碳化物,氮化物和碳依抗碳,具有不同的M 6 x octahedra层的堆叠序列,并取决于n。几乎没有制备“ 211”最大相(n = 1),而最大n,尤其是n≥3的最大相。这项工作解决了有关相对新的“ 514”最大阶段的合成条件,结构和化学组成的开放问题。与文献报告相比,不需要氧化物以形成最大相位,但是需要在1,600°C下进行多个加热步骤。使用高分辨率X射线衍射,(MO 1-X V X)5 ALC 4的结构进行了彻底研究,Rietveld的细化确认P -6 C 2是最合适的空间组。SEM/ED和XPS表明,最大相的化学组成为(MO 0.75 V 0.25)5 ALC 4。也使用两种不同的技术(使用HF和HF/HCl混合物)将其剥落成其MXENE同胞(MO 0.75 V 0.25)5 C 4,这导致了不同的表面终止,如XPS/HAXPES测量所示。对两个MXENE版本的电催化特性的初步研究表明,取决于蚀刻剂(MO 0.75 v 0.25)5 C 4可以在10 mA cm -2下以166 mV(仅HF)或425 mV(HF/HCL)的过度降低在10 mA cm -2下的氢,或者在囊中囊括了潜在的养殖者,这会使他们成为潜在的犬种,以使其成为一种养护的犬种,以使其成为一种犬种的犬种。
随着世界快速发展的经济,天然气,石油和煤炭等不可再生的自然资源的征收日益增加。这些不可再生的资源是环境污染的主要来源,它对减少污染和环境保护的需求构成压力。为了克服这些问题,搜索者正在专注于未来的替代性清洁能源,低成本和环保资源[1 E 7]。氢是能量载体的合适候选者之一,通过光催化和电化学水分裂方法对此进行了广泛研究[8 E 13]。与大规模生产的光催化相比,电解具有较高的效率[14 E 17]。elec- trocatalysts在电解过程中起着至关重要的作用,在电解过程中,由于阴极氢进化反应(HER)和氧作为阳极氧进化反应(OER)而产生氢。到目前为止,她的铂(PT)和OER的氧化偶氮被认为是最好的电催化剂,但稀缺性和高成本限制了它们的大规模生产[18,19]。氢被认为是在不久的将来可以将能量从化学能量转化为燃料电池中的电能的主要来源。用于氢生产,通常使用碱性电解方法。在碱性水电中,强大的碱性培养基被用作电解质,而hy- droxide阴离子则通过这种强的碱性培养基传递到阳极表面,它们会在其中失去电子。像镍之类的过渡金属是贵族金属的良好替代品,因为低成本,高催化性能和地球丰富的材料。应在细胞中使用具有高离子迁移率的电解质,以扩大有合并性。氢氧化钾(KOH)通常用于碱性水电解中,以避免酸性电解质发生的腐蚀问题[20,21]。通过电催化水分裂方法生产氢非常昂贵,而且碳氢化合物的产生中有96%的氢生产[22]。研究人员正在专注于开发具有较高电催化效率且对她的较低电势的新材料的新策略[23]。在电化学中,她是一个广泛调查的行动。为了增强反应动力学,阴极材料必须具有高催化效率,低成本,高表面积和高化学稳定性的特殊组合[24]。除了这些特征外,催化剂的受控形态和表面结构是
环保的期货。4 - 6电化学水分分割过程需要电力,这是通过太阳能电池板或风发电机生成的,这些电池被认为是可持续技术。水分分解涉及两个半细胞反应,其中一种是氢进化反应(她),另一个是氧气进化反应(OER)。在任何一种情况下,水分解都是一种非自发反应,并且伴随着外部能量的使用。但是,通过将电催化剂用作阴极或阳极,可以克服该能量屏障。7,它具有高能量屏障,与她相比,OER半细胞反应在动力学上迟钝,因此,由于缺乏有效的OER反应,不可能通过水分裂解最大的氢产生。为了提高OER半细胞反应动力学的效率,电催化剂在降低水分裂所需的过电位上具有很高的影响,因此可以降低激活能量。8 - 10个基于贵金属的电催化剂,例如Iridium(IRO 2)和ruthenium(Ruo 2),有效的活动,但是它们的稀缺性和成本限制了它们的大规模使用。低成本,简单和高稳定性电催化剂的发展将允许对水分解过程进行调整以扩大应用程序。因此,直接的重点放在非纯粹的电催化剂上,在过去20年中,对更多有效的电催化剂进行了积极的研究,这些电催化剂在其组成中具有最少的贵金属。3,11已研究了几种用于各种电化学应用的材料,包括导电聚合物,碳衍生物,金属氧化物和金属硫磺。尽管过渡金属氧化物,硫化物和导电聚合物具有氧化还原性能,但其工业应用受到其电容有限,低特异性C表面积和不良电导率的限制。5,12最近,储能和转换系统的开发是由金属硫磺的独特特征所构成的,包括它们的丰度,低成本,显着的电导率,高理论电容,易于理论,易于制备和环境友好。13,由于其独特的特征,例如富集的活性位点,较大的表面积和高离子电导率,人们对二维(2D)分层二分法源引起了极大的兴趣。14其中,由于其高电容,催化位点,地球丰度,成本效率和高电荷能力而受到了高度研究的钼de(MOS 2)。15与MOS 2一样,Mo原子位于三明治结构中的两个S原子之间。此外,MOS 2具有三个不同的晶体相,即三角形(1T),六边形(2H)和菱形(3R)。与MOS 2的其他两个阶段相比,2H相高度稳定。在MOS 2中,2H和3R相是半导体的材料,而1T相本质上是金属。热处理可以将3R相变为2H相。16 MOS 2中许多金属氧化态的前提使其成为氧化还原材料和电催化剂。17有证据表明,由于缺乏不饱和边缘作为主动部位和不良电导率的不饱和边缘,她的性能很差。18 - 20 MOS 2已被H 2 O治疗蚀刻,2118 - 20 MOS 2已被H 2 O治疗蚀刻,21
基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |