摘要 在本研究中,我们使用机器学习 (ML) 技术探索了碳掺杂六方氮化硼 (h-BN) 薄片的电子特性。六方氮化硼是一种被广泛研究的二维材料,具有出色的机械、热学和电子特性,使其适用于纳米电子学和光电子学应用。通过用碳原子掺杂 h-BN 晶格,我们旨在研究掺杂如何影响其电子结构,特别关注基态能量和 HOMO-LUMO 间隙。我们生成了一个包含 2076 个 h-BN 薄片的数据集,这些薄片被氢饱和并掺杂了随机变化浓度的碳原子。选择了三种典型的掺杂场景——一个、十个和二十个碳原子——进行深入分析。使用密度泛函理论 (DFT) 计算,我们确定了这些配置的基态能量和 HOMO-LUMO 间隙。使用 Behler-Parrinello 原子对称函数从优化结构生成描述符,这些描述符捕获了 ML 模型的关键特征。我们采用了随机森林和梯度提升模型来预测能量和 HOMO-LUMO 间隙,实现了较高的预测准确率,R 平方值分别为 0.84 和 0.87。这项研究证明了 ML 技术在预测掺杂 2D 材料特性方面的潜力,为传统方法提供了一种更快、更经济的替代方案,对纳米电子、储能和传感器领域的材料设计具有广泛的意义。
•Simpson Ragdale H.等。(parrinello'Sgroup)损伤素素突变的星形胶质细胞,以降低生命。currbiol。2023 3月27日; 33(6):1082-1098•Ho Kwongli等。(sriskandan'sgroup)2023年出现的毒素M1ukstreptoccus pyogeness和相关的sublineage的表征。APR; 9(4):MGEN000994•Page N.等。(galizi'sgroup)Anopheles gambiaeSpermatogenese的单细胞分析定义了X染色体的减数分裂沉默和X染色体的前表达的发作。communbiol。2023年8月15日; 6(1):850•CEIRE J.Wincottet Al。(Matthew Child''组)原生动物病原体的细胞条形码揭示了弓形虫gondiihost定殖的宿主内部人群动力学。细胞报告方法2022第2卷,第8期,100274•REDHAIS。等。(Miguel-Aliaga'Sgroup)2020肠锌传感器调节食物摄入和发育生长。自然。580(7802):263-268。 doi:10.1038/s41586-020-2111-5。
可以克服并模拟数千原子的系统,以获取纳秒级的时间尺度。的确,MLP允许以第一条原理方法成本的一小部分进行从头启动 - 质量的MD模拟。在这种方法中,按照Behler和Parrinello率先提出的策略,36通过神经网络(NN)对原子间的相互作用进行建模,该神经网络(NN)经过训练,可以忠实地预测一套参考文献con的dft计算获得的能量和力量。为了进行反应性过程的准确性,因此,最重要的是,训练数据集不仅包含来自亚稳态状态的采样的低能量结构,而且还包括跨性别状态的情况。不幸的是,对于复杂的系统(例如液体硫),由于存在大型自由能屏障,大多数反应性事件都是在时间尺度上发生的,远远超过了在标准MD模拟中可访问的,因此无法采样。幸运的是,ES方法旨在克服这一限制,并允许在可行的计算时间中对罕见事件进行采样。许多这样的方法基于
摘要:原子神经网络 (ANN) 是一类机器学习方法,用于预测分子和材料的势能面和物理化学性质。尽管取得了许多成功,但开发可解释的 ANN 架构并有效实施现有架构仍然具有挑战性。这需要可靠、通用且开源代码。在这里,我们介绍了一个名为 PiNN 的 Python 库作为实现这一目标的解决方案。在 PiNN 中,我们设计了一种新的可解释且高性能的图卷积神经网络变体 PiNet,并实现了已建立的 Behler-Parrinello 神经网络。使用分离的小分子、结晶材料、液态水和水性碱性电解质的数据集测试了这些实现。PiNN 附带一个名为 PiNNBoard 的可视化工具,用于提取 ANN“学习”到的化学见解。它提供分析应力张量计算,并与原子模拟环境和阿姆斯特丹建模套件的开发版本接口。此外,PiNN 是高度模块化的,这使得它不仅可以用作独立软件包,还可以用作开发和实现新型 ANN 的工具链。代码在宽松的 BSD 许可下分发,可在 https://github.com/Teoroo-CMC/PiNN/ 免费访问,其中包含完整的文档和教程。■ 简介计算化学的主要任务之一是将分子或材料的结构映射到其属性,即 f : { x ⃗ i , Z i } → P 。当 P 是总能量时,任务就是设计计算方法来找到薛定谔方程的近似解,正如狄拉克在 1929 年的解释 1 中所预见的那样,也是一代又一代计算和理论化学家一直致力于研究的那样。更具挑战性的是做逆向 f : P → { x ⃗ i , Z i },也就是说,提出具有特定价值属性的新结构。为了应对这些挑战,机器学习 (ML) 在计算化学和材料发现领域引起了相当大的关注和努力,2 - 4 并且许多不同类型的 ML 方法已成功应用于这些领域。在本文中,我们将重点介绍原子神经网络 (ANN),它在预测物理化学性质、近似势能面 (PES)、5、6 方面非常成功