在此之前,国防部已经花了数年时间仔细评估其在该技术领域的需求和不足之处。其主要不足之处是国防部对最先进微电子产品的采购比其在商业市场上推出的时间晚了 10 年甚至更久。更糟糕的是,这种延迟还在随着时间的推移而增加。然而,随着所部署的武器系统越来越依赖于电子子系统的效能、响应速度和在快速变化的战斗环境中的适应性,随时获得该技术的需求对美国的国防态势越来越重要。VHSIC 计划的目标过去是、现在仍然是,通过为系统开发人员和采购经理提供与商用技术相当甚至更好的军用微电子技术来弥补这一不足。
3D 打印是一种增材制造技术,通过逐层软化热塑性长丝来快速创建 3D 模型。在使用 3D 打印技术制作物体时,有几个参数会影响打印物体的强度,包括打印速度和喷嘴温度。本研究旨在调查打印速度和喷嘴温度对使用 ABS 长丝打印产品的拉伸强度、几何形状和表面粗糙度的影响。打印速度分别为 30、40 和 50 mm/s,喷嘴温度分别为 235、245 和 255 o C。根据 ASTM D-638-02a 对打印样品进行拉伸试验。对尺寸为 30x30x40 mm 的打印样品进行表面粗糙度和几何形状测试。在垂直侧进行表面粗糙度和几何形状测试以检查层数和高度变化。结果表明,根据研究,最佳打印速度和喷嘴温度为 30 mm/s 和 255 o C,此时拉伸强度高达 33.52 MPa。
ISEEK,一种用于高速、并发、分布式取证数据采集的工具。论文发表于 Valli, C. (Ed.)。第 15 届澳大利亚数字... 会议论文集
解决方案 NetApp 和 Run:AI 合作简化了 AI 工作负载的编排,简化了深度学习 (DL) 的数据管道和机器调度流程。通过简化、加速和集成经过验证的 NetApp ONTAP AI 架构的数据管道,您可以充分实现 AI 和 DL 的前景。Run:AI 的 AI 工作负载编排增加了一个专有的基于 Kubernetes 的调度和资源利用率平台,以帮助研究人员管理和优化 GPU 利用率。这些产品共同支持在不同的计算节点上并行运行大量实验,并快速访问集中存储上的许多数据集。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
摘要:加法是数字计算机系统的基础。本文介绍了三种基于标准单元库元素的新型门级全加器设计:一种设计涉及 XNOR 和多路复用器门 (XNM),另一种设计利用 XNOR、AND、反相器、多路复用器和复合门 (XNAIMC),第三种设计结合了 XOR、AND 和复合门 (XAC)。已与许多其他现有的门级全加器实现进行了比较。基于对 32 位进位纹波加法器实现的广泛模拟;针对高速(低 V t )65nm STMicroelectronics CMOS 工艺的三个工艺、电压和温度 (PVT) 角,发现基于 XAC 的全加器与所有门级同类产品相比都具有延迟效率,甚至与库中可用的全加器单元相比也是如此。发现基于 XNM 的全加器具有面积效率,而基于 XNAIMC 的全加器在速度和面积方面与其他两种加法器相比略有折衷。I. 简介二进制全加器通常位于微处理器和数字信号处理器数据路径的关键路径中,因为它们是几乎所有算术运算的基础。它是用于许多基本运算(如乘法、除法和缓存或内存访问的地址计算)的核心模块,通常存在于算术逻辑单元和浮点单元中。因此,它们的速度优化对于高性能应用具有巨大的潜力。1 位全加器模块基本上由三个输入位(例如 a、b 和 cin)组成并产生两个输出(例如 sum 和 cout),其中' sum'指两个输入位'a'和'b'的总和,cin 是从前一级到这一级的进位输入。此阶段的溢出进位输出标记为“ cout ”。文献 [1] – [10] 中提出了许多用于全加器功能的高效全定制晶体管级解决方案,优化了速度、功率和面积等部分或所有设计指标。在本文中,我们的主要重点是使用标准单元库 [11] 中现成的现成组件实现高性能全加器功能。因此,我们的方法是半定制的,而不是全定制的。本文主要关注逻辑级全加器的新颖设计,并从性能和面积角度重点介绍了与许多其他现有门级解决方案的比较。从这项工作中得出的推论可用于进一步改进晶体管级的全加器设计。除此之外,本文还旨在提供教学价值的附加值。本文的其余部分组织如下。第 2 节介绍了 1 位二进制全加器的各种现有门级实现。第 3 节提到了三种新提出的全加器设计。第 4 节详细介绍了模拟机制和获得的结果。最后,我们在下一节中总结。
我们提出了一种使用多体分离式化催化的方法来加快量子绝热算法的方法。这将应用于随机场抗铁磁液体自旋模型。该算法的催化方式使得进化在过程中间近似于海森堡模型,并且该模型处于离域相。我们以数字方式显示,我们可以加快标准算法来使用此想法来查找随机模型的基础状态。我们还证明了加速是由于差距扩增而引起的,即使基础模型并非没有挫败感。分频器到加速度大致出现在相互作用的值中,这被称为离域转变的关键。我们还将参与率和纠缠熵计算为时间的函数:他们的时间依赖关系表明该系统正在探索更多的状态,并且比没有催化剂时更纠缠。一起,所有这些证据都表明加速与离域有关。即使只能研究相对较小的系统,但证据表明,该方法的缩放尺寸是有利的。通过一台小型在线IBM量子计算机的实验结果来说明我们的方法,显示了如何随着这些机器的改善来验证该方法。与标准算法相比,催化方法的成本只是一个恒定因素。