摘要:Grossberg的自适应共振理论的两个通用功能原理解密了所有生物学习和自适应智能的脑法规。低水平表示,这些规则整合了上下文配置的高级长期痕迹。这些普遍的编码原理导致在所有生物物种(从Aplysiae到灵长类动物)中建立了持久的脑签名。根据原始代码和大脑上下文调制的一些相关的经验发现,在本概念论文中重新审视了它们,突出了Grossberg的开拓性洞察力的潜力和开发理论解决方案的潜力,用于发育和认知机器人的智能解决方案。
会议第一天 2024 年 9 月 18 日星期三 欢迎和介绍 马克·沃尔波特爵士 FMedSci FRS 英国皇家学会 马克·沃尔波特爵士是英国皇家学会的外交大臣和副会长。他担任帝国理工学院健康合作伙伴、帝国理工学院学术健康科学中心和肯尼迪纪念信托基金的主席。他是 NHS England 的非执行董事会成员,也是大英博物馆、大和英日基金会和英国健康数据研究的受托人。 之前的职业亮点包括: 英国研究与创新局 (UKRI) 创始首席执行官,2017 – 2020 年。 政府首席科学顾问 (GCSA),2013 – 2017 年。 首相科学技术委员会成员并后任联合主席 威康信托基金主任。 伦敦帝国理工学院医学部教授兼负责人。 英国医学科学院创始院士和第一任注册官。 英国基础设施咨询委员会成员。 大卫·哈雷尔教授 FRS 魏茨曼科学研究所和以色列科学与人文学院
感知决策取决于利用可用感官信息从一组备选方案中选择最具适应性的选项的能力。此类决策取决于生物体的感知敏感性,而感知敏感性通常伴随着对所做选择的相应程度的确定性。在这里,通过使用旨在诱导可塑性变化的皮质皮层配对联想经颅磁刺激方案 (ccPAS),我们根据目标网络塑造了运动辨别任务中的感知敏感性和元认知能力,证明了它们的功能分离。旨在增强 V5/MT+ 到 V1/V2 反向投影的神经刺激增强了运动敏感性而不影响元认知,而增强 IPS/LIP 到 V1/V2 反向投影提高了元认知效率而不影响运动敏感性。这种双重分离为人类感知敏感性和元认知能力的不同网络提供了因果证据。
皮质神经假体视觉中的挑战是确定视觉皮层的最佳,安全刺激模式,以唤起盲人个体中所需的感知(特别是光感知),称为磷光素。当前,临床研究通过要求描述刺激方案的描述来洞悉感知磷光的感知特征。然而,多电极刺激设置的巨大参数空间使得很难得出关于导致良好感知磷光的刺激模式的最佳结论。需要在电刺激的参数空间中进行系统搜索,以实现良好的感知。贝叶斯优化(BO)是有效查找最佳参数的框架。使用患者对感知的评分作为反馈,可以建立基于迭代产生的刺激方案的患者反应模型,以最大程度地提高感知质量。通过迭代呈现刺激方案测试了用内部96通道微电极阵列植入的患者,该患者通过BO生成的刺激方案,用于第二个实验,该刺激方案是通过BO生成的。虽然标准BO方法并不能很好地扩展到超过十几个输入的问题,但我们建议使用基于信任区域的BO优化一组40个电极电流。生成的协议确定了哪些电极是从集合中同时刺激的,以及从0-50 µA范围的电流,最大总电流约束为500 µA。患者根据李克特量表上对感知质量的喜好提供了每种刺激的反馈,其中7个分数表示最高质量和0没有感知。在BO实验中,与RG实验相比,患者感知质量评级逐渐收敛于更高的值。同样,根据观察到的患者对较高的磷光磷酸的偏好,BO选择了逐渐更高的总电流值。最后,在先前的研究中,观察到的电极在产生磷光感知方面更有效,也可以通过BO逐渐选择较高的电流值的分配。这项研究证明了BO基于患者的反馈而融合到最佳刺激方案的力量,从而更有效地搜索了临床研究的刺激参数。
在获取磁共振(MR)图像中,较短的扫描时间会导致更高的图像噪声。因此,使用深度学习方法自动图像降解是高度兴趣的。在这项工作中,我们集中于包含线状结构(例如根或容器)的MR图像的图像。特别是,我们研究了这些数据集的特殊特征(连接性,稀疏性)是否受益于使用特殊损失功能进行网络培训。我们特此通过比较损失函数中未经训练的网络的特征图将感知损失转换为3D数据。我们测试了3D图像降级的未经训练感知损失(UPL)的表现,使MR图像散布脑血管(MR血管造影-MRA)和土壤中植物根的图像。在这项研究中,包括536个MR在土壤中的植物根和450个MRA图像的图像。植物根数据集分为380、80和76个图像,用于培训,验证和测试。MRA数据集分为300、50和100张图像,用于培训,验证和测试。我们研究了各种UPL特征的影响,例如重量初始化,网络深度,内核大小以及汇总结果对结果的影响。,我们使用评估METIC,例如结构相似性指数(SSIM),测试了四个里奇亚噪声水平(1%,5%,10%和20%)上UPL损失的性能。我们的结果与不同网络体系结构的常用L1损失进行了比较。我们观察到,我们的UPL优于常规损失函数,例如L1损失或基于结构相似性指数(SSIM)的损失。对于MRA图像,UPL导致SSIM值为0.93,而L1和SSIM损耗分别导致SSIM值分别为0.81和0.88。UPL网络的初始化并不重要(例如对于MR根图像,SSIM差异为0.01,在初始化过程中发生,而网络深度和合并操作会影响DeNo的性能稍大(5卷积层的SSIM为0.83,而核尺寸为0.86,而5卷积层的0.86 vs. 0.86对于根数据集对5卷积层和5卷积层和内核尺寸5)。我们还发现,与使用诸如VGG这样的大型网络(例如SSIM值为0.93和0.90)。总而言之,我们证明了两个数据集,所有噪声水平和三个网络体系结构的损失表现出色。结论,对于图像
摘要 - 为了主动浏览和遍历各种特征,主动使用视觉感知是必不可少的。我们旨在调查使用稀疏视觉观测值的可行性和性能,以在以人为中心的环境中在一系列常见的地形(步骤,坡道,间隙和楼梯)上实现感知运动。我们制定了适合在感兴趣地形上运动的稀疏视觉输入的选择,并提出了一个学习框架,以整合外部感受和本体感受状态。我们专门设计了状态观察和培训课程,以在各种不同的地形上有效地学习反馈控制政策。我们在各种任务中广泛验证和基准了学到的政策:在地面上行走的全向行走,并在各种障碍物上向前移动,显示出高成功的遍历率。此外,我们通过在新的看不见的地形上增加各种水平的噪声和测试来研究外观感受性消融并评估政策概括。我们证明了自主感知运动的能力,只能使用直接深度测量中的稀疏视觉观测来实现,这些观察值易于从激光雷达或RGB-D传感器中易于获得,在20厘米高度的高高高度上显示出强大的上升和下降,即20 cm的高度,即50%的腿长和强劲的腿部和稳健的噪声和Unigeseen anderseenseles anderseens anderseens anderseen anderseenseles anderseen anderseen sereen seleseen anderains ternales anderains。
摘要 错误相关电位 (ErrPs) 是绩效监控的重要脑电图 (EEG) 相关因素,对于学习和调整我们的行为至关重要。人们对 ErrPs 是否编码了除错误意识之外的更多信息知之甚少。我们报告了一项有 16 名参与者参加的实验,该实验分为三个环节,在执行光标到达任务期间偶尔会发生不同程度的视觉旋转。我们设计了一个脑机接口 (BCI) 来检测提供实时反馈的 ErrPs。单个 ErrP-BCI 解码器在各个环节之间表现出良好的传输性能,并且在错误幅度上具有可扩展性。ErrP-BCI 输出与错误幅度之间的非线性关系可预测个人感知阈值以检测错误。我们还揭示了与所需调整幅度共同变化的 θ-γ 振荡耦合。我们的研究结果为探索和扩展当前的绩效监控理论开辟了新途径,通过结合连续的人机交互任务和对 ErrP 复合物而非单个峰值的分析。
1 泰国曼谷 10140 泰国国王科技大学吞武里学习学院神经科学研究与创新中心,2 泰国曼谷 10140 泰国国王科技大学吞武里工程学院计算机工程系,3 泰国曼谷 10140 泰国国王科技大学吞武里大数据体验中心,4 泰国曼谷 10140 泰国国王科技大学吞武里工程学院生物工程项目,5 加利福尼亚大学圣地亚哥分校心理学系,加利福尼亚州拉霍亚 92093-1090,6 可持续发展研究与创新中心 (RISC) 幸福科学中心,泰国曼谷 10260,7 加利福尼亚大学圣地亚哥分校神经科学研究生项目和 Kavli 大脑与心智基金会,加利福尼亚州拉霍亚92093-1090
在视觉引导的行为过程中,感觉输入和其相关的行为反应之间可能只相隔数百毫秒。不同时间发生的脉冲如何整合以驱动感知和行动仍不清楚。我们提供了随机的光遗传刺激序列(白噪声)来激发雌雄小鼠 V1 中的抑制性中间神经元,同时让它们执行视觉检测任务。然后,我们对光遗传刺激进行了反向相关分析,以生成神经元行为内核,这是一个无偏、时间精确的估计,用于估计在视觉刺激开始前后不同时刻抑制 V1 脉冲如何影响对该刺激的检测。电生理记录使我们能够捕捉到光遗传刺激对 V1 响应性的影响,并揭示了最早的刺激诱发的脉冲在引导行为方面具有优先权重。这些数据证明,白噪声光遗传学刺激是理解如何解码神经元群体中的脉冲模式以产生感知和动作的有力工具。