“这一发现突出了诸如尖晶石之类的材料的令人难以置信的潜力,这些材料长期以来一直以其美学品质而闻名,但现在揭示了深刻的科学能力,” Liew Family教授兼芝加哥大学分子工程学院的Liew Family教授兼研究副院长David Awschalom教授说。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
第二个目标包括对不同钙化温度,异丙醇到氧气的效果的比较分析以及MCO 2 O 4催化剂的不同组成。这些测试是在相同的反应条件下进行的,以便能够在催化剂之间进行最可靠的比较。钙化温度的变化和反应物比的变化对反应结果没有显着影响。另一方面,不同MCO 2 O 4-催化剂的比较显示出与反应的产率和选择性的显着差异。铜催化转化器特别具有有希望的丙酮选择性。虽然NICO 2 O 4仅具有平庸的催化技能,但反应曲线显示出低于400°C的活性在低温下的峰值,与CO 3 O 4相似,表明具有反应性的表面中心或物种的特征性。这项研究提供了对CO 3 O 4催化剂催化行为的有价值的见解,但它也表明需要对经过测试的其他催化剂进行进一步检查,尤其是Cuco 2 O 4 -4 -NICO 2 O 4催化剂,这些催化剂在特定反应条件下显示出独特的机械特征。
由La 3+和Er 3+阳离子联合实施大学,法萨拉巴德大学,38000,巴基斯坦C电气与生物物理学,韩国大学,首尔01897,韩国,韩国,在目前的工作中,稀土共同兴奋剂(RE 3+),LA和ER阳离子,LA和ER阳离子对CD-ZN Spinel Ferrites的物理和介电对cd-ZZN Spinel Ferrites的物理和介电的作用,由olter of-gel-gel-gel-gel-gel-geloso ofero unodocoustoso ofero Ondrouto ofero Ondroposo Ondero Ondero Ondero Ondero Ondero Ondero Ondero Onectose Onect。分别以550℃和750℃的偶尔钙化,分别为2小时8小时。使用XRD,FTIR和电介质测量研究了所获得的样品。XRD粉末模式验证了所有与FD-3M空间基团的所有AS合成铁氧体的尖晶石结构的单相生长。获得的结果表明,晶格常数随着ER 3+浓度的增加而降低,而晶粒尺寸随着ER 3+浓度的增加而显示出增加的行为。FTIR结果揭示了存在两个主要吸收带,即范围405-428 cm -1的低频带和范围523-550 cm -1的高频带,这是尖晶石结构形成的证据。LCR测量用于研究LA 3+和ER 3+的共掺杂对频率响应准备样品的各种介电参数的影响。介电常数和损耗随着ER 3+的掺入而降低,同时观察到AC电导率的增加。观察到的特性表明,准备好的材料是用于在高速微波炉和射频设备中应用的合适候选物。(2024年8月31日收到; 2024年11月14日接受)关键字:La&er共同取代的CD-ZN Ferrites,结构,XRD,FTIR,介电属性1。简介铁氧体材料是由含有铁离子作为其主要成分的氧离子组成的重要类别。它们是陶瓷磁性材料,并发生在各种晶体结构中,但是,尖晶石结构是其中之一,已被广泛研究和报告。尖晶石结构的概念取自MGAL 2 O 4 [1]。该结构由以封闭式FCC形式结构的氧化离子组成,并具有两个类型的间质位点,即四面体和八面体位置。尖晶石铁氧体包含一般式AB 2 O 4,其中“ A”和“ B”代表四面体和八面体位点上的二价和三价金属阳离子[2]。这些材料引起了研究人员的重视研究,以研究其结构,并在各种技术应用中使用电气,介电和磁性。尖晶石铁氧体被归类为软磁性材料,并包含高渗透率[3],良好的化学稳定性,较大的表面积,优势电阻率和低成本[4]和低涡流损失[5],可以使用即将进行的讨论中提到的各种技术轻松地修改和官能化。由于上述属性,这些材料对于记录头,数据存储设备,波浪吸收器,电子设备,高速微波炉和射频设备的制造具有重要意义[6-9]。
Table 1 Lattice parameters of the as-prepared samples Parameters x = 0.0 x = 0.125 x = 0.25 x = 0.375 x = 0.5 β (degree) ±0.05 0.1518 0.1812 0.1940 0.2627 0.8281 D (nm) ±0.05 57.33 48.02 44.87 33.14 10.51 d (Å) 2.5234 2.5221 2.5213 2.5188 2.5149 a (Å) 8.3694 8.3647 8.3622 8.3542 8.3410 V (Å) 3 586.25 585.27 584.75 583.06 580.31 L A (Å) 3.6239 3.6219 3.6208 3.6173 3.6116 l b(Å)2.9585 2.9569 2.9560 2.9532 2.9485γ(Å)0.7495 0.7491 0.7488 0.7481 0.7469 D x(g /cm 3)5.1385 5.2448 5.2448 5.2448 5.3471 5.3471 5.4606 5.4606 5.55848 S(MON 33.15 102.15 P 227.19 190.42 177.98 131.57 41.81 𝜀0.0020 0.0020 0.0024 0.0026 0.0026 0.0036 0.0112δ×10 -4(nm -2)±0.05 3.05 3.04 4.33 4.33 4.96 4.96 9.10 9.10 90.40
摘要:基于氯化物的固体电解质是由于其高LI +离子电导率和与高压氧化物阴极的全溶剂锂电池相关的材料而引人入胜的材料。然而,这些材料的主要示例仅限于三价金属(例如SC,Y和IN),这些金属价格昂贵且稀缺。在这里,我们通过用二二元和四价金属(例如Mg 2+和Zr 4+)代替三价金属来扩展这种材料家族。我们合成李2 mg 1/3 zr 1/3 cl 4在尖晶石晶体结构中,并将其性质与先前报道的高性能LI 2 SC 2/3 Cl 4进行比较。我们发现Li 2 mg 1/3 Zr 1/3 cl 4的离子电导率较低(在30°C时为0.028 ms/cm),比同构结构LI 2 SC 2/3 Cl 4(30°C时1.6 ms/cm)。我们将这种差异归因于Mg 2+和Zr 4+在LI 2 mg 1/3 Zr 1/3 Cl 4中的无序排列,这可能会阻止LI+迁移途径。但是,我们表明,Li 2 -Z Mg 1 - 3 Z /2 Zr Z Cl 4之间的Aliovalent取代在Li 2 MgCl 4和Li 2 Zrcl 6之间可以提高离子电导率,而ZR 4+含量的增加,可能是由于引入了Li +空位。这项工作为基于卤化物的固体电解质打开了一个新的维度,从而加快了低成本固态电池的开发。■简介
后面的印刷:Lankauf K.,GórnickaK。,BłaszczakP。,Karczewski J.在八面体地点,《国际氢能杂志》,第1卷。48,ISS。 24(2023),pp。 8854-8866,doi:10.1016/j.ijhydene.2022.12.01348,ISS。24(2023),pp。8854-8866,doi:10.1016/j.ijhydene.2022.12.013
作者的完整列表:埃卡特琳娜·多尔戈波洛娃(Dolgopolova); Los Alamos国家实验室,材料物理和应用部:Dongfang综合纳米技术中心; Los Alamos国家实验室,材料物理和应用部:纳米技术中心Hartman,S;洛斯阿拉莫斯国家实验室,约翰MST-8瓦;洛斯阿拉莫斯国家实验室,材料和应用部综合纳米技术RIOS,Carlos的材料和应用部;马萨诸塞州理工学院材料科学与工程系HU,Juejun;马萨诸塞州理工学院材料科学与工程系Kukkadapu,Ravi;太平洋西北国家实验室,乔安娜EMSL卡森;洛斯·阿拉莫斯国家实验室,里亚化学司,洛斯;德克萨斯大学达拉斯分校,安东(Anton)物理马尔科(Malko);德克萨斯大学达拉斯大学,阿纳斯塔西娅物理学布雷克(Blake); Los Alamos国家实验室,材料物理和应用部:Sergei综合纳米技术中心;洛斯·阿拉莫斯国家实验室,化学部罗斯利克,奥利克西;福特汉姆大学,物理Piryatinski,安德烈; Los Alamos国家实验室,理论部Htoon,Han; Los Alamos国家实验室,MPA-Cint Chen,Hou-tong;洛斯阿拉莫斯国家实验室,纳米技术综合中心Pilania,Ghanshyam;詹妮弗(Jennifer)霍林斯沃思(Hollingsworth)的洛斯阿拉莫斯国家实验室;洛斯阿拉莫斯国家实验室,a。材料物理和应用部:集成纳米技术中心
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni
引用(APA)Chen,M.,Zhu,L.,Chen,J.,Yang,F.,Tang,C.Y.,Guiver,M.D。和Dong,Y。(2020)。基于尖晶石的陶瓷膜与油性废水处理耦合实心污泥。水研究,169,第115180条。https://doi.org/10.1016/j.watres.2019.115180