CSC的可塑性受到复杂的信号通路网络的调节,包括Notch,Wnt/β-Catenin和Hedgehog,它们通过与肿瘤微环境(TME)相互作用而激活的[7,8]。此外,表观遗传修饰(例如DNA甲基化和组蛋白修饰)也会影响TNBC中的CSC可塑性[9,10]。尽管在理解CSC可塑性的机制方面取得了重大进展,但仍有至关重要的需要新的治疗策略来靶向TNBC中的CSC [4]。本综述将讨论有关TNBC中CSC可塑性的当前知识及其在TME中的调节。它还将重点介绍开发CSC的靶向疗法的最新进展,包括靶向关键信号通路和表观遗传修饰剂的疗法[11,12]。最后,讨论了将临床前研究结果转化为临床实践的挑战,并提出了该领域的未来研究方向。
像E一样的细菌。 大肠杆菌在不同的底物上以截然不同的速率生长,但是,这种变异性的理由的理解很少。 不同的增长率已归因于“营养质量”,这是细菌生长定律的关键参数。 然而,尚不清楚营养质量在多大程度上源于基本的生化约束,例如营养素的能量含量,其摄取和分解代谢所需的蛋白质成本,或质膜用于营养转运蛋白的能力。 在这里,我们表明,虽然营养质量确实反映在底物特异性转运蛋白和酶的蛋白质投资中,但至少对于某些“较差”底物而言,这并不是对生长速率的基本限制。 我们表明,可以将Mannose(e最贫穷的”底物之一转动。 大肠杆菌,通过重新设计甘露糖降解所需的Mannos型转运蛋白和代谢酶的染色体启动子来成为“最佳”底物之一。 该结果与以前对许多其他碳源的增长速度提高的观察结果一致。 但是,我们表明,这种更快的增长率是以各种细胞能力为代价的,反映在较长的滞后阶段,较差的饥饿存活率和较低的杂物。 我们表明,在培养基中添加cAMP可以营救这些表型,但施加了相应的增长成本。 而不是基本的生化限制,而是营养质量反映了由特定生态壁ches中进化所影响的资源分配决策,并且可以在必要时迅速适应。像E一样的细菌。大肠杆菌在不同的底物上以截然不同的速率生长,但是,这种变异性的理由的理解很少。不同的增长率已归因于“营养质量”,这是细菌生长定律的关键参数。然而,尚不清楚营养质量在多大程度上源于基本的生化约束,例如营养素的能量含量,其摄取和分解代谢所需的蛋白质成本,或质膜用于营养转运蛋白的能力。在这里,我们表明,虽然营养质量确实反映在底物特异性转运蛋白和酶的蛋白质投资中,但至少对于某些“较差”底物而言,这并不是对生长速率的基本限制。我们表明,可以将Mannose(e最贫穷的”底物之一转动。大肠杆菌,通过重新设计甘露糖降解所需的Mannos型转运蛋白和代谢酶的染色体启动子来成为“最佳”底物之一。该结果与以前对许多其他碳源的增长速度提高的观察结果一致。但是,我们表明,这种更快的增长率是以各种细胞能力为代价的,反映在较长的滞后阶段,较差的饥饿存活率和较低的杂物。我们表明,在培养基中添加cAMP可以营救这些表型,但施加了相应的增长成本。而不是基本的生化限制,而是营养质量反映了由特定生态壁ches中进化所影响的资源分配决策,并且可以在必要时迅速适应。基于这些数据,我们建议营养质量在很大程度上是一种自决的塑料特性,可以通过用于分类代谢性激活基因的蛋白质组群体中专用于特定底物的蛋白质资源的比例来调节。
摘要 - 您可能已经听说大脑是塑料的。您知道大脑不是由塑料制成的,大脑可塑性也称为神经可塑性。大脑可塑性是一个物理过程。灰质实际上可以缩小或增厚神经连接可以锻造,精制或削弱和切断。大脑可塑性是指大脑在一生中改变的能力。大脑具有通过在脑细胞(神经元)之间形成新的连接来重组自身的惊人能力。很长一段时间以来,人们相信,随着我们的年龄,大脑的连接变得固定。研究表明,实际上大脑永远不会通过学习来改变。可塑性是大脑随着学习而改变的能力。与学习相关的变化主要发生在神经元之间的连接水平上。可以形成新的连接,现有突触的内部结构可能会改变,但也可以根据所收到的外部刺激和前面存在的连接而部分地进行内部拓扑。我们发现这个想法也可以应用于简单的人工神经网络。在本文中,我们提出了一种新方法,以动态地适应人工神经网络的拓扑,仅使用学习集中的信息。以及在本文中,我们提出的算法已经在结果上相对于多层感知器(MLP)问题进行了测试。索引术语 - 学习,神经可塑性,多层感知(MLP),人工神经网络(ANN),神经元,大脑,突触。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年1月4日。 https://doi.org/10.1101/2024.01.03.574123 doi:Biorxiv Preprint
目的:我们提出了一种新型的基于提示的异步大脑 - 计算机间(BCI)通过内源性运动皮质活性与体感途径的激活配对进行神经调节。方法:拟议的BCI检测到实时从单审EEG信号移动的意图,但是与经典的异步BCI系统相反,该检测仅在患者被提出移动时发生时间间隔。将这种基于提示的异步BCI与两种传统的BCI模式(异步BCI和非线同步BCI)进行了比较,并在慢性中风患者中进行了对照干预。记录其大脑信号时,患者在每种干预措施中进行了脚踝肢体的脚踝背部运动。BCI干预措施通过电刺激解码了运动尝试并激活传入途径。皮质运动的兴奋性是在干预后,通过经颅磁刺激引起的胫骨前肌中的运动诱发电位评估的。结果:与先前开发的异步BCI相比,提出的基于提示的异步BCI的假阳性/分钟和误报/真实阳性(%)的较少较少。线性混合模式显示,与对照条件相比,干预后所有BCI模式后,运动诱发的电势幅度增加(p <0.05)。拟议的基于提示的异步BCI导致所有干预措施中的峰值峰值运动诱发潜力振幅(141%33%)的相对增加最大,并持续30分钟(111%33%)。解释:这些发现证明了新提出的基于提示的异步BCI干预的高性能。在此范式中,个人收到精确的说明(CUE)来促进参与度,而精确检测到大脑活动的时机以建立与可塑性诱导的感觉输入的精确关联。
摘要:肿瘤异质性是成功治疗癌症的最大挑战之一。肿瘤细胞群由具有不同表型和基因型特征的不同亚群组成。这种多变性对同时成功靶向所有肿瘤亚群提出了挑战。治疗后的复发以前曾使用癌症干细胞模型和克隆进化模型进行解释。癌症干细胞是调节肿瘤可塑性并决定治疗耐药性的重要肿瘤细胞亚群。肿瘤可塑性受与癌细胞存活、生长和转移有关的关键基因的遗传和表观遗传变化控制。靶向与癌症干细胞存活相关的表观遗传调节剂可以开启一种彻底根除癌症的有希望的治疗方法。本文回顾了控制癌症干细胞表观遗传失调的各种因素,包括组蛋白和 DNA 甲基转移酶、组蛋白去乙酰化酶、组蛋白甲基转移酶等表观遗传介质的作用,以及与癌症干细胞调节相关的各种信号通路。我们还讨论了针对这些因素的当前治疗方案以及临床试验中其他有希望的抑制剂。
这项研究旨在加深对神经可塑性在创伤后损伤中的作用的理解,从而对神经元组织造成身体损害。这项研究的重点是大脑如何通过表观遗传重塑,适应并应对这些最初的伤害以促进恢复。该方法包括使用临床密钥,PubMed,Scopus,Scopus,Science Direct,Web of Science和Google Scholar等数据库,仅限于2019年至2023年发表的英语和西班牙语文章的描述性书目审查。包括相关的科学文章,书籍和公认的指南。此外,通过对医学护理小组的医学病史和访谈来评估五例脑损伤患者的临床病例,以分析神经康复的有效性。结果表明,神经元可塑性是神经系统适应和重组的能力,是创伤性脑损伤后恢复的基础。据观察,结构和功能的神经可塑性过程允许形成新的突触和加强现有突触,从而促进运动和认知功能的恢复。NeuroRehabicitation包括物理治疗,职业治疗,言语治疗和神经刺激等技术,可有效地改善患者的生活质量。通过强调神经可塑性和神经康复对创伤后脑损伤的患者的恢复的重要性,建议实施个性化和先进的治疗方法以优化结果。
通过OCT4,SOX2,KLF4和MYC(OSKM)的表达进行瞬时重编程是组织再生和恢复活力的一种治疗策略,但对其代谢需求知之甚少。在这里我们表明,小鼠的OSKM重编程会导致维生素B 12的全球耗竭和蛋氨酸饥饿的分子标志。补充维生素B 12提高了小鼠和培养细胞中重编程的效率,后者表明细胞中性作用。我们表明,表观遗传标记H3K36me3可防止启动子外转录的违法启动(隐性转录),对维生素B 12级别敏感,为B 12水平(H3K36甲基化,转录延伸性,转录延伸性和有效的重新编程)提供了链接的证据。维生素B 12补充剂还可以加速溃疡性结肠炎模型中的组织修复。我们得出的结论是,维生素B 12通过其在单碳代谢和表观遗传动力学中的关键作用提高了体内重编程和组织修复的效率。
本研究调查了神经网络泛化能力的丧失,重新审视了 Ash & Adams (2020) 的热启动实验。我们的实证分析表明,通过保持可训练性来增强可塑性的常用方法对泛化的好处有限。虽然重新初始化网络可能有效,但也有可能丢失宝贵的先验知识。为此,我们引入了 Hare & Tortoise,其灵感来自大脑的互补学习系统。Hare & Tortoise 由两部分组成:Hare 网络,它类似于海马体,可以快速适应新信息;以及 Tortoise 网络,它类似于大脑皮层,可以逐渐整合知识。通过定期将 Hare 网络重新初始化为 Tortoise 的权重,我们的方法在保留一般知识的同时保持了可塑性。 Hare & Tortoise 可以有效保持网络的泛化能力,从而提高 Atari-100k 基准上的高级强化学习算法。代码可在 https://github. com/dojeon-ai/hare-tortoise 上找到。
突触连接的数量和强度会因经验和活动而发生变化,这推动了学习过程中神经回路的细化。哺乳动物大脑皮层中的大多数兴奋性突触都发生在树突棘上,树突棘是神经元树突的微观膜状突起 [ 1 , 2 ]。精确调节树突棘的生长、稳定和消除对于学习至关重要 [ 3 – 5 ]。树突棘的体积也受到动态调节,并且与 AMPA 型谷氨酸受体 (AMPAR) 的数量高度相关,后者介导快速兴奋性突触传递;因此,树突棘的大小与突触功能紧密相关 [ 6 ]。事实上,通过诱导长期增强 (LTP) 而增加的突触强度与树突棘扩大有关 [ 7 , 8 ],而通过诱导长期抑制 (LTD) 而降低的突触强度与树突棘收缩或丢失有关 [ 8 , 9 ]。树突棘发育和可塑性机制失调可导致树突棘改变
