研究课题的相关性 当前,基于“互补金属氧化物半导体”(CMOS)技术的元件库由于其功能性强、速度快、能耗低等特点,在计算技术和控制系统的电子设备中占据主导地位。在现代 CMOS 微电路中,一个特征是闩锁效应或晶闸管效应 (TE),它在暴露于天然或人工来源的电离辐射时发生。由于制造具有 n 型和 p 型通道的紧密间距 MOSFET 的工艺过程的特殊性,在这些微电路中形成了寄生 pnpn 结构,在正常条件下不会影响产品的性能。当这种寄生pnpn结构受到外界影响而导通时,就会发生晶闸管效应,导致电流消耗不可逆增加,只能通过重置电源才能消除。除了故障之外,大电流的流动还可能导致灾难性的故障(CF)。 TE 的发生水平通常决定了 CMOS 微电路的抗辐射能力。
近年来,晶体管技术的进步使得人们能够设计出越来越复杂的集成电路。随着在降低功耗和提高性能方面取得的巨大成就,在考虑深度扩展技术时也面临着新的挑战。明显的工艺变异性、老化和辐射效应是经常出现的设计挑战,其重要性也日益增加 [1-5]。集成电路越来越容易受到单个高能粒子撞击的影响,可能会产生破坏性或非破坏性的影响。当粒子撞击触发 CMOS 电路中固有的 PNPN 结构中的寄生晶体管时,就会发生单粒子闩锁 (SEL),这可能会产生破坏性影响 [6]。当高能粒子从顺序逻辑元件撞击晶体管的敏感区域并沉积足够的电荷以扰乱电路时,单粒子翻转 (SEU) 会以位翻转的形式出现。此外,组合逻辑电路容易受到单粒子瞬态 (SET) 效应的影响,这种效应表现为粒子与处于关断状态的晶体管漏极电极相互作用产生的寄生瞬态电流。这并不是单粒子效应 (SEE) 的详尽列表 [7]。辐射加固设计 (RHBD) 技术已经开发出来,用于应对不同辐射条件下电子电路的辐射效应