二氢乳清酸脱氢酶 (DHODH) 是从头合成嘧啶所需的关键酶,由于受感染宿主细胞中病毒复制对嘧啶的需求量大,并且已被证实能够阻断免疫细胞释放细胞因子,从而防止炎症导致急性呼吸窘迫,因此建议将其作为 COVID19 治疗的靶标。目前有许多使用 DHODH 抑制剂治疗 COVID19 的临床试验正在进行中;但是,只有少数已知的 DHODH 拮抗剂可供测试。在这里,我们应用了一种方法来识别 DHODH 拮抗剂候选物,并使用计算机模拟靶标预测工具对它们进行了比较。从 DrugBank 获得的 7900 种 FDA 批准和临床阶段药物与 PDB 中可用的 20 种不同结构的 DHODH 进行了对接。Autodock Vina 根据药物的预测亲和力将其淘汰。大约剩下 28 种 FDA 批准的药物和 79 种正在进行临床试验的药物。使用 Autodock 4 和 DS Visualiser 重复对接分析了这些分子的相互作用模式。最后,通过 PASS 和 SwissTargetPrediction 工具确定了 28 种 FDA 批准药物的靶标区域预测。有趣的是,计算机模拟靶标预测分析显示,血清素-多巴胺受体拮抗剂也可能是潜在的 DHODH 抑制剂。我们的候选药物具有一个共同的属性,即可能与血清素-多巴胺受体以及其他氧化还原酶(如 DHODH)相互作用。此外,我们列表中的布鲁顿酪氨酸激酶抑制剂阿卡布替尼和血清素-多巴胺受体抑制剂药物在文献中已被证明对 Sars-CoV-2 有效,但活性途径尚未确定。确定一种既能抑制炎症又能抑制病毒增殖的有效药物将在 COVID 的治疗中发挥关键作用。因此,我们建议对 28 种 FDA 批准的药物对 DHODH 活性和 Sars-CoV-2 病毒增殖的影响进行实验研究。那些经实验证明有效的药物可以在 COVID19 治疗中发挥重要作用。此外,我们建议调查使用精神分裂症和抑郁症药物的患者的 COVID19 病例情况。
胸苷激酶 2 (TK2) 是一种核编码的线粒体酶,可磷酸化嘧啶核苷胸苷 (dT) 和脱氧胞苷 (dC) 以生成它们的核苷单磷酸。TK2 在静止细胞的脱氧核苷三磷酸补救合成途径中至关重要,其缺乏会导致线粒体耗竭/多重缺失综合征 [ 1 , 2 ]。TK2 基因的隐性突变主要导致线粒体肌病,其发病年龄和严重程度范围很广 [ 3 ]:从极其严重且快速进展的婴儿期发病形式,存活期不到两年,与线粒体 DNA (mtDNA) 耗竭(MIM# 609560)有关,到不太严重的形式,发病较晚,进展速度较慢,与 mtDNA 多重缺失有关。晚发型患者,以前定义为 12 岁以后出现症状的患者 [ 3 ],其表型包括进行性近端肢体、轴向、颈部屈肌和面部肌肉无力,常与眼睑下垂、眼肌麻痹和延髓无力有关,并伴有早期严重的
摘要 RNA 引导的 CRISPR/Cas9 系统是基因组编辑的强大工具,但其靶向范围受到原型间隔区相邻基序 (PAM) 的限制。为了扩大靶向范围,开发能够识别多种 PAM 的 CRISPR 工具箱至关重要。在这里,我们使用 GFP 激活分析测试了与 Nme1Cas9 密切相关的 29 种 II-C 型直系同源物的活性,其中 25 种在人类细胞中有活性。这些直系同源物识别具有不同长度和核苷酸偏好的多种 PAM,包括富含嘌呤、富含嘧啶以及混合嘌呤和嘧啶的 PAM。我们深入表征了 Nsp2Cas9 的活性和特异性。我们还生成了一种识别简单 N 4 C PAM 的嵌合 Cas9 核酸酶,这代表了迄今为止紧凑型 Cas9 最宽松的 PAM 偏好。这些 Cas9 核酸酶显著增强了我们进行等位基因特异性基因组编辑的能力。
人类呼吸综合病毒(RSV)是急性下呼吸道感染的重要原因,目前尚无有效药物。因此,新有效的抗RSV药物的开发是紧急优先事项,可以认为靶向宿主的抗病毒药(HTA)可以靶向RSV感染。作为对这座抗病毒大道的贡献,我们表征了MEDS433的抗RSV活性的分子机制,MEDS433是一种新的二羟基脱氢酶(H Dhodh)的新抑制剂,这是一种新的De Novo pyrimidine Biosyynthesseiss的关键细胞酶。发现MEDS433在一位数的纳摩尔范围内对RSV-A和RSV-B发挥有效的抗病毒活性。对MEDS433处理的细胞中RSV复制周期的分析表明,H DhoDH抑制剂抑制了病毒基因组的合成,其能力始终具有特异性靶向H Dhodh酶活性的能力。然后,MEDS433的能力诱导由干扰素刺激的基因(ISGS)编码的抗病毒蛋白的表达被鉴定为其针对RSV的抗病毒活性的第二种机制。的确,MEDS433刺激了IFN-β和IFN-λ1的分泌,而IFN-β和IFN-λ1又诱导了某些ISG抗病毒蛋白的表达,例如IFI6,IFITM1和IRF7。这些ISG蛋白的单独表达降低了RSV-A的补充阳离子,因此可能有助于MEDS433的总体抗RSV活性。最后,即使在主要的人类小气道上皮细胞模型中,MEDS433也被证明是有效抵抗RSV-A复制的。从整体上讲,这些观察结果为进一步开发Meds433提供了新的见解,作为制定新的RSV感染治疗策略的有前途的候选人。
着色性干皮病 (XP) 是一种由核苷酸切除修复 (NER) 途径(AG 组)或跨损伤合成 DNA 聚合酶 η (V) 基因突变引起的遗传性疾病。XP 与皮肤癌风险增加有关,对于某些群体来说,与一般人群相比,风险可高达数千倍。在这里,我们分析了来自五个 XP 组的 38 个皮肤癌基因组。我们发现 NER 的活性决定了皮肤癌基因组间突变率的异质性,并且转录偶联的 NER 超越了基因边界,降低了基因间突变率。XP-V 肿瘤中的突变谱和使用 POLH 敲除细胞系的实验揭示了聚合酶 η 在无错误绕过(i)罕见的 TpG 和 TpA DNA 损伤、(ii)嘧啶二聚体中的 3' 核苷酸和(iii)TpT 光二聚体中的作用。我们的研究揭示了 XP 皮肤癌风险的遗传基础,并对减少一般人群中紫外线诱发的突变的机制提供了见解。
自1950年引入以来,基于嘌呤或嘧啶类似物的基于核苷的药物已成为有效的治疗剂,该药物已广泛部署在治疗多种疾病(例如癌症,骨髓增生性塑料综合征,多发性硬化症,多发性硬化症和病毒感染)中。这些抗代谢物与细胞分子成分建立复杂的相互作用,主要是通过激活磷酸化级联反应,从而导致与核酸相互作用的相互作用。然而,这些药物的治疗功效经常因耐药性的发展而受到损害,这是其临床应用中不断出现的挑战。这篇全面的综述探讨了对基于核苷的药物的抗性机制,其中包括膜转运蛋白改变的广泛现象,并激活激酶,从而导致药物消除策略和DNA损伤修复机制的变化。这篇综述的批判分析强调了药物和细胞的复杂相互作用,还指导了应对新型治疗策略以抵消分解的策略。靶向疗法,新型核苷类似物和协同药物组合的发展是恢复肿瘤敏感性并改善患者预后的有前途的方法。
了解促进转移播种早期事件的机制是开发减少转移的治疗方法的关键,这是与癌症相关死亡的主要原因。使用全动物筛查在癌症的基因工程小鼠模型中,我们已经确定了与转移相关的循环代谢产物。具体来说,我们将嘧啶尿嘧啶作为突出的转移相关代谢物。尿嘧啶是由表达尿苷磷酸酶-1(UPP1)的中性粒细胞产生的,癌症中嗜中性粒细胞的特异性UPP1表达增加。改变的UPP1活性会影响中性粒细胞表面上的粘附分子的表达,从而导致嗜中性肺前肺中性粒细胞运动降低。此外,我们发现表达UPP1的中性粒细胞抑制T细胞增殖,UPP1产物尿嘧啶可以增加细胞外微环境中的纤连蛋白沉积。始终如一,具有乳腺肿瘤的小鼠中UPP1的敲除或抑制会增加T细胞的数量,并减少肺中的纤连蛋白含量,并降低发展肺转移的小鼠比例。这些数据表明UPP1在肺中影响中性粒细胞的行为和细胞外基质沉积,并表明该途径的药理靶向可能是减少转移的有效策略。
RNase A是一种用于分子生物学应用的牛胰腺内切核酸酶。RNase A的主要应用是从制备质粒DNA以及提取质粒DNA中去除RNA。它也用于去除非特异性结合的RNA; RNase保护分析; RNA序列的分析以及蛋白质样品中包含的RNA的水解。rNase A在嘧啶核苷酸的3¢磷酸盐处攻击。PG-PG-PC-PA-PG的序列将被裂解以得到PG-PG-PCP和A-PG。最高的活性用单链RNA表现出来。RNase A是一个包含4个二硫键的单链多肽。 rnase a可以通过烷基化12或119的烷基化来抑制,这些烷基化存在于酶的活跃部位中。 RNase A的活化剂包括钾和钠盐。 Molecular mass: 13.7 kDa (amino acid sequence) Extinction coefficient: E1% = 7.1% (280nm) Isoelectric point: pI: 9.6 Optimum temperature: 60°C (activity range of 15 - 70°C) Optimum pH: 7.5 (activity range of 6 - 10) Inhibitors: Ribonuclease inhibitor Activity (Kunitz): ≥60 units/mg蛋白质RNase A是一个包含4个二硫键的单链多肽。rnase a可以通过烷基化12或119的烷基化来抑制,这些烷基化存在于酶的活跃部位中。RNase A的活化剂包括钾和钠盐。 Molecular mass: 13.7 kDa (amino acid sequence) Extinction coefficient: E1% = 7.1% (280nm) Isoelectric point: pI: 9.6 Optimum temperature: 60°C (activity range of 15 - 70°C) Optimum pH: 7.5 (activity range of 6 - 10) Inhibitors: Ribonuclease inhibitor Activity (Kunitz): ≥60 units/mg蛋白质RNase A的活化剂包括钾和钠盐。Molecular mass: 13.7 kDa (amino acid sequence) Extinction coefficient: E1% = 7.1% (280nm) Isoelectric point: pI: 9.6 Optimum temperature: 60°C (activity range of 15 - 70°C) Optimum pH: 7.5 (activity range of 6 - 10) Inhibitors: Ribonuclease inhibitor Activity (Kunitz): ≥60 units/mg蛋白质
核碱基。6尽管从那时起,众多CT状态的示例已在不同的修饰和DNA的天然形式中得到了证实,但控制此过程效率的关键因素仍然是晦涩的。因此,对能够执行效果紫外线诱导的电荷转移的DNA序列的预测仍然是一个挑战。在不同的过程中,可以通过DNA中的电荷分离触发的不同过程,环丁烷嘧啶二聚体(CPD)的自我修复最近引起了很大的关注。15,16 CPD是DNA暴露于紫外线的最常形成的光子,其最具特征性的结构元素是在两个相邻的嘧啶碱基之间形成的环丁烷环。17 - 21形成该环丁烷环的形成影响糖 - 磷酸骨架的结构,并排除了生化活性,例如DNA复制和转换。21,22在生物学中,CPD修复酶,例如光酶,通过从avin腺嘌呤co因子注入电子,修复病变,从而吸收可见光。23 - 27类似地,表明特定的c dNA序列或替代核碱基通过光诱导的电子转移触发非酶DNA自修复。16,28 - 30最突出的DNA自我修复例子被证明了代表CPD的损坏的GAT] T序列(“]”),以及位于CPDS的附属物中的2,6-二氨基嘌呤(D)和8-氧气胰蛋白酶(d)和8-氧气(O)核苷酸酶。尤其是31,32,描述了GAT] T序列是在其光激发时从鸟嘌呤转移的顺序电子转移。3133 - 35换句话说,非酶DNA自我修复的产率是表现出有效的光诱导电荷分离如何在特定的C DNA序列中发生的,以及CT状态的寿命是否很长以使光化学反应很长。值得强调的是,CPD的高度有效的自我修复大大提高了特定序列的光稳定性,并被认为是从丰富的随机序列库中的原始RNA和DNA寡聚物的可能选择因子。1,15,36,37更重要的是,已经提出了紫外线作为核苷酸选择性益生元合成的关键能源之一。38 - 46这导致上述D和O核碱基作为与规范核酶相比,由于其改善的电子含量和CPD更换特性,因此将上述D和O核酶视为第一个信息聚合物的潜在组成部分。尤其是31,32,47,含有D核苷酸酶和T] T二聚体的DNA三核苷酸显示可修复CPD,当在280 nm处受照射时,产量达到92%,因此,D可以保护DNA在预防性的情况下将DNA低聚物保护在光电座上。
尽管在治疗急性淋巴细胞白血病(ALL)方面,T-Cell All(T-All)的治疗选择有限,尤其是在复发/难治性疾病的情况下。使用公正的基因组尺度CRISPR-CAS9屏幕,我们试图识别T-All的途径依赖性,这可以利用用于治疗的发展。一碳叶酸,嘌呤和嘧啶途径的破坏是T-ALL增殖所需的最高代谢途径。我们使用了最近开发的SHMT1和SHMT2,RZ-2994的抑制剂来表征T-All中抑制单碳叶酸途径的这些酶的作用,并发现T-ALL细胞系对RZ-2994差异敏感,并诱导S/G2细胞周期的药物。通过补充甲酸盐挽救了SHMT1/2的抑制作用。SHMT1和SHMT2的丧失对于生长和细胞周期停滞受损是必要的,并抑制了SHMT1和SHMT2在体内抑制白血病进展。RZ-2994还减轻了体内白血病负担,并在体外甲氨蝶呤耐药性方面保持有效。这项研究强调了T-ALL中单碳叶酸途径的重要性,并支持SHMT抑制剂的进一步发展,以治疗T-All和其他癌症。