数学,以发展学生处理各种现实世界问题及其应用的信心和能力。课程成果:在课程结束时,学生将能够co1:开发和使用工程师需要用于实际应用所需的矩阵代数技术。二氧化碳:将平均值定理用于现实生活中的问题。co3:熟悉几个变量的功能,这些函数在优化方面有用。CO4:在更高维度中学习微积分的重要工具。 co5:使用笛卡尔和极性坐标熟悉多个变量在两个维度中的函数的双重和三个积分,并使用圆柱和球形坐标在三个维度中。 单元I矩阵等amatrixbyechel的形式,正常形式。 cauchy – binet公式(无证明)。 通过高斯 - 约旦方法的非单数矩阵倒数,线性方程系统:通过高斯消除方法,雅各比和高斯·塞德尔迭代方法解决均质和非均匀方程的系统。 II单元的特征值,特征向量和正交转换特征值,特征向量及其特性,基质的对角线,Cayley-Hamilton定理(没有证据),cayley-Hamilton toblets of Quadrations of Quadrations of Quadrations of quadrations of quadrations to quadrations quadrix dy quadrations quadrix的逆和力正交转换。 jacobians,功能依赖性,最大值和两个变量功能的最小值,Lagrange乘数的方法。 单元V多个积分(多变量演算)CO4:在更高维度中学习微积分的重要工具。co5:使用笛卡尔和极性坐标熟悉多个变量在两个维度中的函数的双重和三个积分,并使用圆柱和球形坐标在三个维度中。单元I矩阵等amatrixbyechel的形式,正常形式。cauchy – binet公式(无证明)。通过高斯 - 约旦方法的非单数矩阵倒数,线性方程系统:通过高斯消除方法,雅各比和高斯·塞德尔迭代方法解决均质和非均匀方程的系统。II单元的特征值,特征向量和正交转换特征值,特征向量及其特性,基质的对角线,Cayley-Hamilton定理(没有证据),cayley-Hamilton toblets of Quadrations of Quadrations of Quadrations of quadrations of quadrations to quadrations quadrix dy quadrations quadrix的逆和力正交转换。jacobians,功能依赖性,最大值和两个变量功能的最小值,Lagrange乘数的方法。单元V多个积分(多变量演算)第三单分子的平均值定理:罗尔定理,拉格朗日的平均值定理,其几何解释,库奇的平均值定理,泰勒的泰勒和麦克劳林理论具有剩余(无证明),上述理论的问题和应用。第四单元部分分化和应用(多变量计算)功能的几个变量:连续性和不同性,部分导数,总导数,链规则,定向导数,泰勒和麦克拉林的两个变量功能的串联功能扩展。
开发工程师为实用应用所需的矩阵代数技术。查找本征值和本征媒介并使用线性转换解决问题在更高维度中学习微积分的重要工具。熟悉几个变量的功能,这些函数可用于优化。熟悉两个和三个维度的几个变量功能的双重和三个积分。单位-I:矩阵矩阵的矩阵等级,由echelon形式,正常形式。cauchy –binet公式(无证明)。线性方程式的高斯 - jordan方法系统的非奇异矩阵倒数:通过高斯消除方法的均质和非均匀方程的求解系统,高斯·塞德尔迭代方法。单位-II:线性变换和正交转换:特征值,特征媒介及其特性(无证据证明),基质的对角线化,Cayley-汉密尔顿定理(没有证明),cayley-hamilton Theorem,quadratic of quadrations of quadrations of quadrations of quadration fore the quadrations fore the quadrations的逆和力量的逆和力正交转换单元-III:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释,Cauchy的平均值定理,Taylor's和Maclaurin定理以及剩余(无证据),问题和上述定理的剩余(无证据)。单位-IV:部分分化和应用(多变量微积分)