算法:改进了数据加载部分,在数据准备技术中添加了块编码,并在算法中添加了半经典 QFT。改进了 Shor 整数分解算法和 QPE 算法的解释。添加了一个表格,总结了 Shor 整数分解、Shor 离散对数和量子相位估计算法之间的差异。更新了 NISQ 部分,考虑到 IBM 和 Quantinuum QPU 在量子比特保真度方面的最新进展。更好地解释了 DAQC 计算范式。添加了一个图表,定位了解决组合优化问题的经典和量子方法。在复杂性类部分中添加了一些复杂性类:FP、PostBQP。FPTAS、PTAS、APX 和 NPO。更新了一些图表并创建了新的图表。
强大 由 Atom Computing 制造的全球最大量子计算机已突破 1000 量子比特大关。现有量子计算机的潜力使其能够用于 NLP 等数据密集型领域。 完善的理论基础 经过近一个世纪的发展,量子力学和范畴论已经演化成为统一的科学语言。量子力学和范畴论天生适合处理大数据和非局部相关性,因此非常适合自然语言处理领域 易于使用的工具 目前有很多用于量子计算和 QNLP 的开源工具,例如 IBM 的 qiskit 和 Quantinuum 的 lambeq。所有这些工具都有助于让从初学者到高级学习者的更广泛受众更容易使用量子计算,并支持不断壮大的社区。
表示在jmax=12处截断。我们还发现谱函数与频率的比值ρxyðωÞω在频率较小时呈现峰结构。在更大格子上超过jmax=12后,精确对角化方法和简单矩阵乘积态经典模拟方法都需要指数增长的资源。因此,我们开发了一种量子计算方法来计算延迟格林函数,并分析了计算的各种系统性,包括jmax截断和有限尺寸效应、Trotter误差和热态制备效率。我们的热态制备方法仍然需要随着格子尺寸呈指数增长的资源,但在高温下具有非常小的前因子。我们在Quantinuum模拟器和IBM模拟器上对小格子进行了测试,得到了与经典计算结果一致的结果。
量子信息扰乱描述了最初局部信息通过纠缠生成在整个量子多体系统中的快速传播。一旦扰乱,原始局部信息就会被全局编码,无法从任何单个子系统访问。在这项工作中,我们引入了一种协议,该协议允许将信息扰乱到过去,甚至在生成原始信息之前就可以解码。该协议是通过使用概率方法模拟封闭的时间曲线(一种粒子可以沿时间向后穿越的理论构造)来实现的。值得注意的是,我们发现更强的扰乱动力学可以增强解码过程的保真度。我们进一步介绍了一种量子电路设计,并在基于云的 Quantinuum 和 IBM 量子计算机上实验性地实现了我们的协议。我们的方法阐明了一个独特的量子任务:在不改变过去的情况下检索未来编码的信息。
紧凑的量子数据表示对于数据分析的量子算法这一新兴领域至关重要。我们引入了两种新的数据编码方案 QCrank 和 QBArt,它们通过均匀控制的旋转门具有高度的量子并行性。QCrank 将一系列实值数据编码为数据量子位的旋转,从而实现高存储密度。QBArt 直接将数据的二进制表示嵌入计算基础中,需要更少的量子测量,并有助于对二进制数据进行易于理解的算术运算。我们介绍了针对不同类型数据的几种拟议编码应用。我们展示了用于 DNA 模式匹配、汉明重量计算、复值共轭和检索 O(400)位图像的量子算法,所有算法都在 Quantinuum QPU 上执行。最后,我们使用各种可云访问的 QPU(包括 IBMQ 和 IonQ)来执行其他基准测试实验。
介绍了一个框架,用于在一个空间维度的 2 味晶格理论中实时模拟强子和原子核的弱衰变。通过 Jordan-Wigner 变换映射到自旋算子后,发现标准模型的单代需要每个空间晶格点 16 个量子比特。该动力学包括量子色动力学和味变弱相互作用,后者通过四费米有效算子实现。在 Quantinuum 的 H1-1 20 量子比特捕获离子系统上开发并运行了实现该晶格理论中时间演化的量子电路,以模拟单个重子在一个晶格点上的 β 衰变。这些模拟包括初始状态准备,并针对一个和两个 Trotter 时间步骤执行。讨论了此类晶格理论的潜在内在误差修正特性,并提供了模拟由中微子马约拉纳质量项引起的原子核 0 νββ 衰变所需的主要晶格哈密顿量。
更独特的是,我们还对 QSCOUT 中的双量子比特门进行了重要的参数化。离子阱系统中的自然双量子比特门称为 Mølmer-Sørensen (MS) 门,它是 Bloch 超球面上的 XX 型相互作用。标准捕获离子门组(例如 IonQ 或 Quantinuum 的商业测试台使用的门组)提供具有固定旋转角 π/2 的 XX 或 ZZ 相互作用。对于 QSCOUT,我们扩展了该产品,以允许用户选择参数化的 MS 门,这意味着他们能够定义该相互作用的相位和旋转角度。通过这样做,我们提供了一组更完整的门,以更有效地实现他们所需的算法。这些参数化的双量子比特门是吸引我们第一轮一半用户的关键功能。在第一轮中,我们改进了实现这些门的技术,并计划在 QSCOUT 继续进行时提供更多的可定制性和参数化。
量子计算机已开始从纯学术研究稳步过渡到工业应用。此类系统对材料设计、药物研发、物流、金融、安全、计量等领域具有潜在影响。我们已经进入了一个新时代,尽管量子比特阵列规模很小(1000 个),但量子计算机在解决特定问题方面已经远远优于传统计算机。全球努力的方向是提高量子计算机的可扩展性,同时保持其准确性。执行量子计算的主要平台之一是离子阱系统。该系统拥有最佳的单量子比特和双量子比特门保真度和较大的相干时间,因此使其成为多家国际行业参与者的物理量子比特实现选择,例如 Alpine quantum technologies (AQT)、ionq、Quantinuum(霍尼韦尔分拆公司)、量子工厂、oxford ionics、eleqtron。霍尼韦尔和 AQT 演示了一些东西。