UAV图像采集和深度学习技术已被广泛用于水文监测中,以满足数据量需求不断提高和质量的增加。但是,手动参数培训需要反复试验成本(T&E),现有的自动培训适应简单的数据集和网络结构,这在非结构化环境中是低实用性的,例如干山谷环境(DTV)。因此,这项研究合并了转移学习(MTPI,最大转移电位指数法)和RL(MTSA强化学习,多汤普森采样算法)在数据集自动启动和网络中自动培训,以降低人类的经验和T&E。首先,为了最大程度地提高迭代速度并最大程度地减少数据集消耗,使用改进的MTPI方法得出了最佳的迭代条件(MTPI条件),这表明随后的迭代仅需要2.30%的数据集和6.31%的时间成本。然后,在MTPI条件(MTSA-MTPI)中提高了MTSA至自动提高数据集,结果显示准确性(人为误差)提高了16.0%,标准误差降低了20.9%(T&E成本)。最后,MTPI-MTSA用于四个自动训练的网络(例如FCN,SEG-NET,U-NET和SEG-RES-NET 50),并表明最佳的SEG-RES-NET 50获得了95.2%WPA(准确性)和90.9%的WIOU。本研究为复杂的植被信息收集提供了一种有效的自动培训方法,该方法提供了减少深度学习的手动干预的参考。
参数 尺寸 单位 质量 M 千克,kg 长度 L 米,m 时间 T 秒,s 温度 Ϫ 开尔文,K,摄氏度 速度 L/T 米/秒,m/s 密度 ML –3 千克/米 3 力 ML –1 T –2 牛顿,N = 1 千克·米/秒 2 压力 ML 2 T –2 N/米 2 ,帕斯卡,Pa 能量,功 ML 2 T –3 Nm,= 焦耳,J 功率 ML 2 T –3 J/s,瓦特,W 绝对粘度 ML –1 T –1 Ns/米 2 ,Pa-s 运动粘度 L 2 T –1 米 2 /s 热导率 MLT –3 Ϫ –1 W/mK,W/mo C
课程简介:学生将通过实践和模拟活动探索电路中的能量传递。绩效期望:HS-PS3-1:创建一个计算模型,当已知系统中其他组件的能量变化和流入和流出系统的能量时,计算系统中一个组件的能量变化。MS-PS3-2:开发一个模型来描述当远距离相互作用的物体的排列发生变化时,系统中会存储不同数量的潜在能量。具体学习成果:学生将能够 - 通过探索微电子在日常设备中的作用来吸引兴趣。 - 通过实践活动研究微电子元件如何管理和存储能量。 - 解释微电子系统中的能量关系并利用计算模型。 - 将他们对微电子能量管理的理解应用于实际问题。 - 评估他们对微电子中的能量传递、潜在能和计算建模的理解。叙述/背景信息 对于微电子 5E 课程计划,学生需要掌握基本电路概念的基础知识,包括了解电阻器、电容器和电源等组件。他们应该熟悉能量传递的原理,包括势能和动能的作用,以及欧姆定律与电压、电流和电阻的关系。了解能量如何存储(在电容器中)和耗散(在电阻器中)很重要,以及微电子如何在智能手机或计算机等日常设备中发挥作用。熟悉电子表格或电路仿真软件等基本计算工具也将有助于学生在课堂上模拟电路中的能量关系。 科学与工程实践:开发和使用模型 开发一个模型来描述不可观察的机制。(MS-PS3-2) 使用数学和计算思维 创建现象、设计设备、过程或系统的计算模型或模拟。(HS-PS3-1)
摘要:转移悖论是一般均衡理论中的经典悖论,即影响均衡价格的资源转移使捐赠者受益而损害接受者。本文使用预测会出现这种悖论的三主体纯交换经济的理论框架对转移悖论进行了实验研究。进行了两种处理。在第一种处理中,实验经济中每个主体角色都有一个受试者。在另一种处理中,实验经济中每个主体角色有五个受试者(总共 15 个受试者)。实验结果表明,主体之间的禀赋转移影响了市场清算价格,因此捐赠者从这种转移中受益,这与竞争均衡理论一致。在群体规模较大的处理中,均衡效应最强,这与拥有更多市场参与者会鼓励他们表现出竞争性的想法相呼应。此外,当有转移的选择时,大多数捐赠主体会内生地决定调整禀赋分布。详细分析发现,受试者的转学决定主要受到价格均衡效应的驱动,他们的决定基本不受其测量的认知能力水平的影响。
由于预训练的深度学习模型大量可用,迁移学习在计算机视觉任务中变得至关重要。然而,从多样化的模型池中为特定的下游任务选择最佳的预训练模型仍然是一个挑战。现有的衡量预训练模型可迁移性的方法依赖于编码静态特征和任务标签之间的统计相关性,但它们忽略了微调过程中底层表示动态的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们提出了一种名为 PED 的富有洞察力的物理启发方法来应对这些挑战。我们从势能的视角重新定义模型选择的挑战,并直接模拟影响微调动态的相互作用力。通过捕捉动态表示的运动来降低力驱动物理模型中的势能,我们可以获得增强的、更稳定的观察结果来估计可迁移性。在 10 个下游任务和 12 个自监督模型上的实验结果表明,我们的方法可以无缝集成到现有的排名技术中并提高其性能,揭示了其对模型选择任务的有效性以及理解迁移学习机制的潜力。代码可在 https://github.com/lixiaotong97/PED 上找到。
1. 在两个杯子中倒入等量的水。在进行演示时让水达到室温。 2. 为全班同学举起速效冷敷袋和热敷袋。 3. 询问学生是否曾使用过这两种产品治疗伤口。 4. 向学生解释,化学反应是产生冷敷袋冷却和加热效果的原因。解释当冷敷袋内单独袋子中的盐化合物与水接触时,会发生化学反应。 5. 测量并记录两个杯子的水温。在白板或交互式白板上记录初始温度,让全班同学看得见。 6. 启动热敷袋。 7. 将热敷袋放入杯子中。 8. 测量并记录水温。在全班同学看得见的地方记录最终温度。 9. 从杯子中取出袋子。将袋子在班上传递,让学生观察热传递。 10. 向学生解释,在冷敷袋冷却和加热过程中,化学能转化为热能。
该公司计划继续实现该业务的有机增长,这得益于在经合组织国家开发和运营的项目组合,2020 年与 Ibereólica Renovables 在智利签署合资企业以及收购美国 Hecate Energy 公司 40% 的股份后,这一增长势头进一步增强。Hecate Energy 专门从事光伏和储能项目的开发。Repsol 计划在今年年底前实现 1.7 吉瓦的可再生能源装机容量,另有 4.7 吉瓦的项目正在建设或开发中。
摘要 — 现代神经调节系统通常提供大量的记录和刺激通道,这降低了每个通道的可用功率和面积预算。为了在面积限制越来越严格的情况下保持必要的输入参考噪声性能,斩波神经前端通常是首选方式,因为斩波稳定可以同时改善(1/f)噪声和面积消耗。现有技术中,通过基于输入电压缓冲器的阻抗增强器解决了输入阻抗大幅降低的问题。这些缓冲器对大型输入电容器进行预充电,减少从电极吸取的电荷并有效提高输入阻抗。这些缓冲器上的偏移直接转化为电荷转移到电极,这会加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,它通过定期重新配置来消除偏移,从而最大限度地减少意外的电荷转移。本文详细介绍了背景和电路设计,并介绍了在 180 nm HV CMOS 工艺中实现的原型的测量结果。测量结果证实,发生了与信号无关的缓冲器偏移引起的电荷转移,并且可以通过所提出的缓冲器重新配置来缓解这种电荷转移,而不会对输入阻抗增强器的操作产生不利影响。所提出的神经记录器前端实现了最先进的性能,面积消耗为 0.036 mm2,输入参考噪声为 1.32 µV rms(1 Hz 至 200 Hz)和 3.36 µV rms(0.2 kHz 至 10 kHz),功耗为 13.7 µW(1.8 V 电源),以及 50 Hz 时的 CMRR 和 PSRR ≥ 83 dB。
关于DTI,数据传输计划(DTI)是与科技行业和其他利益相关者合作的政策专家和技术人员的非营利组织,以增强数据可移植性。我们的使命是通过简单,安全的数据传输来增强人们的能力,从而扩大数字经济中的选择和机会。Vision Data Portability赋予个人能力,增强市场竞争并推动创新。当人们能够轻松,安全地移动其个人数据时,他们会从新的机会和下游创新中受益,而这些创新将是不可能的。这种重新构成市场,从而使用户,新进入者和更广泛的在线生态系统受益。数据可移植性的许多令人惊讶的好处在于隐私,但在当今最关键的技术政策挑战中起着不可或缺的作用:
摘要无线电力传输(WPT)技术的最新进展为消费者和行业提供了更方便,高效和智能的电动汽车(EV)和智能设备(SDS)(例如智能手机,无人机,机器人和物联网)的收费。WPT已被采用,以免手工频繁地进出充电。仅凭重型电池就无法解决所有移动物体的饥饿能量问题,最终应该为此充电。在本教程中,首先简要介绍了包括电感功率传递(IPT)在内的WPT的基本原理,并解释了主要的WPT理论,例如耦合线圈模型,Gyrator电路模型,磁性镜像模型和一般统一的动态词曲模型。电动汽车的WPT进展得到了广泛的解释,它们分类为固定的电动汽车(SCEV)和道路驱动电动汽车(RPEV)。SCEV由于便利性和安全性而变得越来越吸引人。此外,由于电动汽车市场份额和可再生能源的市场份额迅速增加,电动汽车和网格的互操作性变得非常重要。电动汽车不再是简单的能源消费者,而是电网的能源提供者。WPT是一种有前途的解决方案,可以在停放时自动将电动汽车与网格连接。这是SCEV作为可互操作系统的灵活手段的潜在贡献。详细解决了线圈设计,大容忍度充电,补偿电路和异物检测(FOD)问题。也总结了全球技术发展的最新进展。rpevs没有严重的电池问题,例如大,重,昂贵且昂贵的电池组以及较长的充电时间,因为它们在移动时直接从道路上获得电源。通过创新的半导体开关,更好的线圈设计,巷道构造技术和更高的操作频率的优点,已提高了WPTSS的功率转移能力,效率,电磁场(EMF),气隙,大小,重量和成本。引入了WPT的最新进展。SD的WPT中的进步被解释了,根据操作环境,它们彼此之间的不同。智能手机是WPT中最成功的应用程序,现在正在不断发展,以获得太空中的更多收费自由。由于分布式和物联网的多种性质,WPT的广泛领域非常具有挑战性。各种动力水平和耐力时间的各种无人机和机器人需要具有足够快速的充电速度,并具有位置自由度。最近的技术发展将解释。解决了WPT问题的未来,其中包括可互操作的无线电动汽车,更长的距离IPT,3D无线充电器和合成的磁场聚焦(SMF)。