旋转的黑洞储存了可以提取的旋转能量。当黑洞浸入外部提供的磁场时,能层内磁场线的重新连接会产生负能量(相对于无穷大)粒子,这些粒子会落入黑洞事件视界,而其他加速粒子则会逃脱并从黑洞中窃取能量。我们通过分析表明,当黑洞自旋较高(无量纲自旋 a ∼ 1)且等离子体被强磁化(等离子体磁化 σ 0 > 1 / 3)时,可以通过磁重联提取能量。允许提取能量的参数空间区域取决于等离子体磁化和重新连接磁场线的方向。对于 σ 0 ≫ 1,被最大旋转黑洞吞噬的减速等离子体的焓在无穷大处的渐近负能量为 ϵ ∞ − ≃− p
旋转黑洞存储旋转能,可以提取。当黑洞浸入外部提供的磁场中时,重新连接了巨石内的磁场线可以产生负能量(相对于无穷大)粒子,而这些颗粒落入黑洞事件地平线中,而其他加速的颗粒逃脱了从黑洞中窃取能量的颗粒。我们分析表明,当黑洞旋转高(无量纲旋转A〜1)并且血浆被强磁化时,可以通过磁重新连接进行能量提取(等离子体磁化σ0> 1 = 3)。允许能量提取的参数空间区域取决于等离子体磁化和重新连接磁场线的方向。对于σ0≫1,发现被最大旋转黑洞吞咽的减速等离子体的无穷大的渐近负能量是ϵ∞ -≃-效应σ0= 3 p。逃脱到无穷大的加速等离子体,将黑洞能量渐近为每个焓ϵ∞dimplotighotilefforkloicking3σ0p。我们表明,通过逃逸等离子体从黑洞中提取的最大功率为p max extri〜0。1 M 2效应σ0P W 0(在此,M是黑洞质量,W 0是无碰撞等离子体状态的等离子体焓密度),碰撞状态低一个数量级。能量提取会在〜1时引起黑洞的显着染色。发现通过磁重连接在Ergosphere中的血浆能量过程的最大效率被发现为ηmax≃3= 2。由于在此处提出的场景中应间歇性地发生Ergosphere中的快速磁重新连接,因此预计黑洞中几个重力半径内的相关发射有望表现出爆发性质。
极快变异性的起源是Blazars伽马射线天文学中的长期问题之一。尽管许多模型解释了较慢,能量较低的可变性,但它们无法轻易考虑到达到每小时时间尺度的快速流动。磁重新连接是将磁能转化为重新连接层中相对论颗粒加速的过程,是解决此问题的候选解决方案。在这项工作中,我们在统计比较中采用了最新的粒子模拟模拟,观察到了众所周知的Blazar MRK 421的浮雕(VHE,E> 100 GEV)。我们通过生成模拟的VHE光曲线来测试模型的预测,这些曲线与我们开发的方法进行了定量比较,以精确评估理论和观察到的数据。通过我们的分析,我们可以约束模型的参数空间,例如未连接的等离子体的磁场强度,观察角度和大黄色射流中的重新连接层方向。我们的分析有利于磁场强度0的参数空间。1 g,相当大的视角(6-8°)和未对准的层角度,对多普勒危机的强烈候选危机进行了强大的解释,通常在高同步器峰值峰值的射流中观察到。
在这里,我们使用MMS数据以新的细节显示EDR附近的能量通量密度的性质以及两侧的排气。我们在2015年10月16日在13:07:02.2 UT检查了EDR遭遇[24,29]。这是一个不对称的重新连接事件,其平面外(指南)磁场[30]。尽管总体离子能量通量密度行为与先前的结果一致,但离子热通量密度逆转,针对EDR。更令人惊讶的是,EDR附近的平面外电子通量密度非常明显,其幅度与流出中的离子能通量密度相当。常规2D模型通常会忽略此通量密度,因为它不会导致净能通量进入扩散区域,但是此类模型可能不足以捕获与颗粒加速度,传输和波浪产生有关的磁性能量传输过程。这种通量还表明,即使磁性重新连接几何形状往往是局部二维的,即使磁性重新连接几何形状可能存在中尺度和宏观尺度的三维效应。
1 波尔多大学天体物理学实验室波尔多,法国国家科学研究中心,佩萨克,法国 2 法国国家科学研究中心天体物理学和行星研究所,法国图卢兹,UPS,法国国家空间研究中心 电子邮件:benoit.lavraud@irap.omp.eu 3 AKKA,法国图卢兹 4 捷克布拉格查尔斯大学数学与物理学院表面与等离子体科学系 5 大学学院 Mullard 空间科学实验室London, Holmbury St. Mary, Dorking, Surrey, UK 6 INAF-Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, 00133 Roma, Italy 7 西南研究所,圣安东尼奥,美国 8 德克萨斯大学圣安东尼奥分校物理与天文学系,圣安东尼奥,德克萨斯州,美国 9 Laboratoire de Physique des Plasmas, Ecole法国帕莱索理工学院 10 系密歇根大学气候与空间科学与工程系,美国安娜堡 11 伦敦帝国理工学院 Blackett 实验室空间与大气物理学系,英国伦敦 12 法国奥尔良大学 LPC2E,法国国家科学研究中心,法国奥尔良 13 法国默东 LESIA 14 意大利卡拉布里亚大学物理系,意大利伦德 15 意大利航天局 ASI,意大利罗马 16 美国加州大学伯克利分校空间科学实验室 17 西班牙穆尔西亚穆尔西亚大学 18 瑞典斯德哥尔摩 KTH 19 美国新罕布什尔大学空间科学中心,新罕布什尔州达勒姆 03824 20 欧洲空间局 (ESA),欧洲空间天文学中心 (ESAC),西班牙马德里 Villanueva de la Cañada,Camino Bajo del Castillo s / n,28692
1.2。Automatic reconnection after tripping Automatic reconnection of non-synchronous power-generating modules after tripping is possible when following frequency range and voltage range are both fulfilled during the whole period of observation time: Voltage range: 85 – 110 % of nominal voltage Frequency range: 47,5 - 50,05 Hz Observation time (grid monitoring time): 300 s (5 minutes) After reconnection, the active power generated通过非同步发电的模块不得超过特定的梯度10%p名义 /分钟 /分钟= 600秒(当实际p = 0%时)以达到1%的p象征性。表示,每分钟的主动标称功率的百分比表示。非同步的功率生成模块在技术上不可行而增加了在全部功率范围内尊重指定梯度的功率,可能会在20分钟后连接。捷克共和国的标称低压水平= 230 V(相位为中性= l-n)。
最近,Phan 等人 [14] 报告了准平行弓形激波下游地球磁鞘中纯电子重联的卫星观测结果,其中 X 点两侧相反方向的阿尔文电子喷流提供了重联的“确凿证据” 。在航天器穿过磁鞘的整个轨迹中,没有观察到与重联相关的阿尔文离子喷流。二维 (2D) 粒子胞内 (PIC) 模拟表明,当岛间系统尺寸 Δ 减小到离子动力学尺度的 40 倍以下时,离子开始与重联过程脱钩 [15] 。二维纯电子重联的重联速率和电子流出速度明显高于离子耦合重联 [15] ,三维重联甚至更高 [16] 。在磁化等离子体湍流[17 – 21]和近无碰撞冲击[22 – 24]中,纯电子重联被认为是能量级联到动能尺度的重要过程。然而,人们对纯电子重联过程中的能量转换与完全离子耦合重联的区别了解甚少,后者
通过拆除或后退堤坝将水体重新连接到相邻的洪泛区,可以给自然资源带来诸多好处,包括野生动物、植被、地下水,在某些情况下还可以降低洪水风险。然而,通过拆除现有堤坝来重新连接洪泛区需要全面了解现有和未来的洪水风险,以及其他附带影响和好处。有关洪水风险基础知识的相关信息,请参阅第 1 章。虽然有许多驱动因素可以启动洪泛区重新连接项目,但成功实施将直接与及早建立明确的目标、选择合格的规划师和设计师团队以及及早的社区和监管参与有关。
背景。对日冕中重联喷流的观测正在成为研究难以捉摸的日冕加热的一种可能的诊断方法。这种喷流,特别是被称为纳米喷流的喷流,可以在日冕环中观察到,并且与纳米耀斑有关。然而,虽然模型成功地描述了导致喷流的双侧重联后磁弹弓效应,但观测表明纳米喷流是单向的或高度不对称的,只有相对于日冕环曲率向内移动的喷流才能清晰地观察到。目的。这项工作的目的是解决日冕环曲率在非对称重联喷流的产生和演化中的作用。方法。我们首先使用一个简化的分析模型,在该模型中,我们根据重联前磁场线与其重联后缩回长度之间的局部交叉角来估算重联后的张力,以达到新的平衡。其次,我们使用一个简化的数值磁流体动力学 (MHD) 模型来研究两个相反传播的喷流如何在弯曲的磁场线中演变。结果。通过我们的分析模型,我们证明了在重联后重组的磁场中,向内的磁张力本质上比向外的磁张力强(高达三个数量级),并且当缩回长度足够大时,存在一个向外的张力消失的状态,导致在可观测的大尺度上没有向外的喷流。我们的 MHD 数值模型为这些结果提供了支持,并且还证明在随后的时间演化中,向内的喷流始终更具能量。还发现小角度重联和更局部的重联区域的不对称程度会增加。结论。这项研究表明,日冕环的曲率在重联喷流的不对称性中起着重要作用,向内的喷流比相应的向外的喷流更容易发生,而且能量也更高。