Spaceborne Rendezvous是一项冒险且具有挑战性的任务。处理真正的非合作目标使这一任务更具挑战性。与经典的轨内集合和对接活动相反,这些活动可以依赖于目标的某种程度的合作,例如稳定的态度,信息交换或特殊标记来简化导航,ClearSpace-1任务打算捕获不会通过任何方式来减轻此任务的对象。因此,有必要设计强大的指导,导航和控制(GNC)并捕获能够应对未知目标状态的策略,该策略首先可以在轨道上的会合过程中进行更精确的分析。此外,低地球轨道的地面可见性和限制运营成本的愿望需要高水平的车载自主权,这在自主系统完整性监控方面带来了其他挑战。
控制平面主机之一在启动过程开始时运行辅助服务,并最终成为引导程序主机。此节点称为Rendezvous主机(节点0)。辅助服务确保所有主机都满足要求并触发OpenShift容器平台群集部署。所有节点都具有写入磁盘的Red Hat Enterprise Linux CoreOS(RHCOS)图像。非引导节点重新启动并启动集群部署。重新启动节点后,会合主机重新启动并加入群集。引导程序已完成,并且部署了群集。
现在,自主系统的增加要求这些系统能够在其环境中与其他物体近距离工作,并且需要在环境物体上完成许多任务,例如装配、运输、会合、对接或避开它们,如碰撞检测/避免、路径规划等。在这篇文献综述中,我们讨论了基于机器学习的算法,这些算法解决了基于视觉的自主系统的第一步,即基于视觉的姿势估计。本文对使用 2D 和 3D 输入数据的 6D 姿势估计的进展进行了批判性回顾,并比较了它们如何应对基于计算机视觉的定位问题所面临的挑战。我们还研究了算法及其在太空任务中的应用,如在轨对接、会合和空间视觉应用带来的挑战。在综述的最后,我们还强调了一些小问题和未来研究的可能途径。
封面艺术:艺术家对 NASA 新型宇宙飞船的概念图。由重新设计的航天飞机固体火箭助推器和上级发动机发射,类似于阿波罗计划中使用的发动机。四名机组人员将与在地球轨道上搭载登月舱的飞船会合。
2. ISAM 是指在轨道上、在空间物体和天体表面以及在这些区域之间移动时使用的一组能力。ISAM 的“服务”方面包括航天器首次发射后在空间中的检查、寿命延长、维修、加油或改造等活动,包括但不限于:目视获取、会合和/或近距操作、对接、停泊、重新定位、升级、重新定位、脱离对接、脱离停泊、释放和离开、再利用、轨道运输和转移以及及时收集和清除碎片。2 这些活动通常包括在“客户”航天器附近进行机动和操作的过程,3 一组通常称为会合和近距操作 (RPO) 的活动。“服务”一词还用于描述航天器从一个轨道到另一个轨道的运输,以及碎片的收集和清除。 “组装”是指利用预制部件建造空间系统,“制造”是将原材料或回收材料转化为空间中的部件、产品或基础设施。4
对于初始服务,目标没有太阳同步轨道,其平均地方时漂移约为 20 度/年。目标升交点地方时将在 2024 年 11 月约为 13h45,这限制了可能的插入轨道。分离和发射后退轨后,对平台进行标准调试,并增加捕获机制和会合传感器的功能测试。服务器通过节点进动和倾角校正匹配目标轨道平面,执行轨道提升和相位调整,将自身置于预期目标位置后方 30 公里处并探测目标。服务器使用仅角度导航逐渐安全地缩短距离。服务器收集并下行目标和会合传感器上的数据,并调试相对 GNC 执行近距离轨迹,逐渐靠近目标并最终捕获目标。目标和服务器的组合堆栈退轨。捕获数据已传输,堆栈的质心与推力轴对齐。堆栈已准备好重返大气层并脱离轨道。
• 没有支持会合导航的反射器/LED/标记 • 没有专用的对接端口/捕获环等。 • 无法与物体通信 • 关于目标的信息很少(没有详细的几何模型) • 最终损坏的物体(损坏的卫星、碎片) • 在低地球轨道 (LEO) 中:服务人员和地面之间没有永久联系 需要机载自主权! • 在地球同步轨道 (GEO) 中:地面和太空之间有几秒钟的时间延迟