Sullivan,27 Dempsey,28 Ishitani,29和其他30-32岁,就其地面和激发态特性研究了不同的rhenium(I)羰基配合物。在这些配合物的设计中,持续的挑战是它们的吸收扩展到电磁谱的可见和近红外(NIR)区域。我们已经表明,通过在配体框架的远程位置引入像NME 2这样的强有力的捐赠组,激发状态的角色发生了变化(例如,在复合物1a和1b之间,方案1)从金属到配体电荷转移(MLCT)到内聚电荷转移(ILCT)。这导致了Ca的红移。100 nm的吸收最大值和B 200倍的寿命增加,伴随着B灭绝系数增加了5倍。24
使用栅极电压来控制流经纳米级超导收缩的超导电流,称为栅极控制的超电流(GCS),出于基本和技术原因引起了极大的兴趣。为了更深入地了解这种效果并基于IT开发超导技术,必须确定对GCS效应至关重要的材料和物理参数。自上而下的制造方案也应优化以提高设备可伸缩性,尽管研究表明自上而下的制造设备更具弹性,可以显示出GCS。在这里,我们研究了通过自上而下的纳米三生,该纳米三生物是由自上而下的制造工艺制成的,该工艺是从非中心对称超导体超导体niobium rhenium(niobium rhenium)(NBRE)变化的。与以前用自上而下的方法报告和制造的其他设备不同,我们的NBRE设备是从具有较小晶粒尺寸且在特定条件下蚀刻的NBRE薄膜制成的,系统地表现出GCS效应。这些观察结果为实现具有高扩展性的自上而下的GCS设备铺平了道路。我们的结果还意味着,纳米三酚的结构障碍和表面物理特性等物理参数又可以通过制造过程来修改,这对于GCS观察至关重要,因此也提供了对GCS效应基础物理的重要见解。
使用栅极电压来控制流经纳米级超导收缩的超导电流,称为栅极控制的超电流(GCS),出于基本和技术原因引起了极大的兴趣。为了更深入地了解这种效果并基于IT开发超导技术,必须确定对GCS效应至关重要的材料和物理参数。自上而下的制造方案也应优化以提高设备可伸缩性,尽管研究表明自上而下的制造设备更具弹性,可以显示出GCS。在这里,我们研究了通过自上而下的纳米三生,该纳米三生物是由自上而下的制造工艺制成的,该工艺是从非中心对称超导体超导体niobium rhenium(niobium rhenium)(NBRE)变化的。与以前用自上而下的方法报告和制造的其他设备不同,我们的NBRE设备是从具有较小晶粒尺寸且在特定条件下蚀刻的NBRE薄膜制成的,系统地表现出GCS效应。这些观察结果为实现具有高扩展性的自上而下的GCS设备铺平了道路。我们的结果还意味着,纳米三酚的结构障碍和表面物理特性等物理参数又可以通过制造过程来修改,这对于GCS观察至关重要,因此也提供了对GCS效应基础物理的重要见解。
从而更能抵抗开发的影响。目前,已有多种已知且广泛用于工业的涂层沉积方法,例如选择性激光熔化、使用微米和纳米级粉末的 HVOF 技术以及反应爆炸喷涂 [1-3]。电沉积是另一种可以生产具有特定功能特性的现代涂层的方法。通过控制电沉积参数(即电流、电压、温度和镀液成分),可以影响所得材料的结构,从而影响其性能。该方法的本质是可以同时共沉积几种金属以形成合金,甚至将金属粉末掺入涂层结构中 [4-18]。镍是广泛用于各种电化学过程中的金属之一,因为它具有良好的耐腐蚀性。为改善镍镀层,人们采用了各种改性方法,例如使用合金代替纯元素 [5,6,12]。电解镍镀层中一种有趣的添加剂是铼,它是地球上最稀有、最昂贵的金属之一。金属铼类似于铂,通常被归类为贵金属。纯净的铼是一种银色、有光泽且硬度较高的金属。它可精炼金属合金,显著提高其硬度和耐腐蚀性。铼只溶解在氧化性酸中:硝酸和热浓硫酸。大量铼用于生产特殊合金或超级合金,例如在航空工业中用于生产喷气发动机部件。铼还用于生产热电偶、加热元件、电触点、电极、电磁铁、真空和 X 射线灯、闪光灯泡、金属涂层,也可用作复分解和环氧化等反应的催化剂 [19-22]。由于铼属于“耐腐蚀金属”类,因此亚铁族阳离子的存在对于电解合金涂层的形成是必要的。含铼合金涂层的电沉积研究已成为许多研究的主题。此类材料可通过电流和化学沉积方法生产 [23-25]。