建立了一个精神分裂症的分类模型,该模型在 COBRE 数据集中对 SZ 和 HC 具有良好的预测能力,利用该模型,分类准确率达到 95.53%,但仍需进一步改进才能满足实际应用需求。
胃体中的 Cajal 肌间质细胞网络充当着胃的“起搏器”,持续产生约 0.05 Hz 的电慢波,主要通过迷走神经传入神经传递到大脑。最近的一项研究将静息态功能磁共振成像 (rsfMRI) 与同步表面胃电图 (EGG) 相结合,将皮肤电极放置在上腹部,发现 12 个大脑区域的活动与胃基础电节律明显相位锁定。因此,我们探究使用空间独立成分分析 (ICA) 方法估计的大脑静息态网络 (RSN) 的波动是否可能与胃同步。在本研究中,为了确定任何 RSN 是否与胃节律相位锁定,对一名参与者进行了 22 次扫描;在每个会话中,获取两次 15 分钟的 EGG 和 rsfMRI 数据。三个会话的 EGG 数据具有微弱的胃信号而被排除;其余 19 个会话总共产生了 9.5 小时的数据。使用组 ICA 分析 rsfMRI 数据;估计 RSN 时间进程;对于每次运行,计算每个 RSN 和胃信号之间的锁相值 (PLV)。为了评估统计意义,所有“不匹配”数据对(在不同日期获取的 EGG 和 rsfMRI 数据)的 PLV 被用作替代数据来生成每个 RSN 的零分布。在总共 18 个 RSN 中,发现三个与基础胃节律显著锁相,即小脑网络、背部体感运动网络和默认模式网络。肠脑轴负责维持中枢神经系统与内脏之间的内感受反馈,其紊乱被认为与多种疾病有关;脑部 rsfMRI 数据中胃部亚慢节律的表现可能对临床人群研究有用。
图1神经认知数据和统计分析的处理步骤。首先,使用T1加权解剖图像来计算皮质表面积和皮质厚度的估计值。第二,根据HCPMMP地图集,将T1加权的解剖图像分为每个半球180个皮层结构,每个半球8个皮层结构。第三,将所得的遮罩线性转化为静止状态和扩散加权图像的天然空间。对于扩散加权图像,使用上述面膜作为种子和靶区域进行概率纤维跟踪。对于静止状态图像,计算了所有大脑区域的平均粗体时间课程之间的相关性。第四,结构和功能网络构建。边缘通过概率纤维拖拉术或粗体信号相关的结果加权。第五,这些网络用于计算全球效率测量RSFMRI E和DWI E以及淋巴结效率测量RSFMRI EI和DWI EI。第六,针对脑度量和PG的每种组合进行了全球调解分析。 在此,由I-S-T 2000 R总分量化的通用智能用作因变量。 自变量是两个PG(PGS EA和PGS GI)之一。 全脑量度(总表面积,平均皮质厚度,DWI E或RSFMRI E)用作介体。 最后,针对大脑指标和PG的每种组合,通过弹性网状回归进行了特定区域的多媒体分析。第六,针对脑度量和PG的每种组合进行了全球调解分析。在此,由I-S-T 2000 R总分量化的通用智能用作因变量。自变量是两个PG(PGS EA和PGS GI)之一。全脑量度(总表面积,平均皮质厚度,DWI E或RSFMRI E)用作介体。最后,针对大脑指标和PG的每种组合,通过弹性网状回归进行了特定区域的多媒体分析。再次,I-S-T 2000 R总分是因素,PGS是自变量。表面积,皮质厚度,DWI EI或每个HCPMMP区域的RSFMRI EI用作介体。
精神分裂症研究表明,该组中所有死亡原因中多达40%可以归因于自杀(Wildgust等,2010),而25-50%的精神分裂症患者试图在他们的一生中自杀(Bohaterewicz等人,2018年; Cassidy等,2018年)。因此,非常需要开发更准确和客观的方法来预测精神分裂症患者自杀的风险。功能磁共振成像(fMRI)是一种非侵入性,广泛使用的方法,允许一种方法来测量人脑的活性。静止状态(RS)反过来被认为是高度有效的,因为它捕获了大脑总活动的60-80%(Smitha等,2017)。此外,一些研究表明,它允许监测治疗结果以及评估精神疾病的生物标志物(Glover,2011; Moghimi等,2018)。Previous studies indicate gray matter volume reduction in dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, as well as insular cortex in patients after suicide attempt, compared to the ones without suicide attempt in the past ( Besteher et al., 2016 ; Zhang et al., 2020 ), whereas fMRI studies revealed that during a simple task based on cognitive control, suicide thoughts were associated随着PFC活性的降低和先前的自杀企图的病史导致前皮层的活性降低(Minzenberg等,2014; Potvin等,2018)。体积和功能任务的先前结果fMRI分析表明,默认模式网络(DMN),显着性网络(SN)和Sensorimotor Network(SMN)中包含的区域的潜在静止状态大脑活动变化。近年来,RSFMRI数据的机器学习应用程序越来越多,以进行预后评估并在各个组或条件之间进行差异(Pereira等,2009)。最近,采用了以fMRI为公正的生物标志物的ML分类器来识别从事自杀相关行为的人,包括自杀念头。例如,Just等。(2017)能够正确地识别17名自杀参与者中的15个,灵敏度为0.88,使用高斯幼稚的贝叶斯算法和fMRI数据的特定为0.94。在最近的工作中,Gosnell等人。(2019)使用了随机森林(RF)算法和RSFMRI功能连通性数据,来自精神病患者,使他们能够以81.3%的敏感性正确地对自杀行为进行了分类。据我们所知,先前的研究都没有集中于各种ML分类器,以区分基于RSFMRI数据的健康控制(HCS),自杀风险(SR)和非杀伤性风险(NSR)精神分裂症患者。 在当前的工作中,我们的目标是将ML方法与RSFMRI数据相结合,以便研究所选的分类器是否允许在具有和没有自杀风险的精神分裂症患者之间进行分歧。 最终,执行了五种算法,例如梯度提升(GB),最小绝对收缩和选择操作员(LASSO),Logistic回归(LR),RF和支持向量机(SVM),以提高诊断准确性的可靠性。 每个指标礼物据我们所知,先前的研究都没有集中于各种ML分类器,以区分基于RSFMRI数据的健康控制(HCS),自杀风险(SR)和非杀伤性风险(NSR)精神分裂症患者。在当前的工作中,我们的目标是将ML方法与RSFMRI数据相结合,以便研究所选的分类器是否允许在具有和没有自杀风险的精神分裂症患者之间进行分歧。最终,执行了五种算法,例如梯度提升(GB),最小绝对收缩和选择操作员(LASSO),Logistic回归(LR),RF和支持向量机(SVM),以提高诊断准确性的可靠性。每个指标礼物
许多最近的研究调查了用于预测fMRI个人行为的机器学习技术。尽管获得了令人鼓舞的结果,但过度的扫描时间(尤其是在静止状态fMRI)是一个限制因素。在这里,我们提出了一种新的机器学习算法,用于使用静止状态(RSFMRI)以及基于任务的fMRI(TFMRI)来预测健康人类受试者的个体行为。它通过集成学习和部分最小二乘回归而不是通过脑部拟合或ICA分解来降低维度。此外,它还引入了ricci-eman曲率作为一种新型的边缘重量。作为概念证明,我们专注于预测流体,结晶和一般智力得分。在人类连接项目的390个无关测试对象的队列中,我们发现观察到的TFMRI中观察到的一般智能与预测的一般智能超过50%,约为59%(r2≈0。29)合并两个任务的结果时。我们将这些结果与现有方法的基准进行了比较,该方法在RSFMRI和TFMRI中都产生了低于50%的相关性。我们得出的结论是,通过应用于TFMRI的新型机器学习技术,可以在扫描时间的一部分中获得明显更好的预测准确性。
图1 MNI152空间中RSFMRI指标和QSM图像的处理管道的概述。从QSM图像中提取的静脉中,在天然空间中生成了距离图和传播直径图。然后将图像注册到MNI152空间。The top row depicts the rsfMRI metrics in MNI152 space: sagittal view of the amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), Hurst Exponent (HE), Coherence [Coherence (Cohe)-Regional Homogeneity (ReHo)], Kendall's Coefficient Concordance (KCC)-ReHo and一个参与者的特征向量中心(EC)值。底部行:来自天然空间中同一参与者的定量敏感性映射(QSM)图像,从容器分割档案中(阈值= 0.5;天然空间),所得的部分体积(PV;第二行)和直径图(第三行)(第三行)。PV和直径图排除了所有静脉<0.3 mm。距离图和传播直径图分别从PV和天然空间中的直径图计算出来。距离> 6.7 mm的组织体素。地图已注册到MNI152空间,并仅限于GM(第二行和第三行的最后一列)。
摘要 — 由于脑动力学的复杂性,静息态功能性磁共振成像 (rsfMRI) 中血氧水平依赖性 (BOLD) 信号的传统建模难以进行参数估计。本研究介绍了一种新型脑动力学模型 (BDM),该模型通过微分方程直接捕捉 BOLD 信号变化。与动态因果模型或神经质量模型不同,我们将血流动力学响应整合到信号动力学中,同时考虑直接和网络介导的神经元活动效应。我们利用物理信息神经网络 (PINN) 来估计此 BDM 的参数,利用它们将物理定律嵌入学习过程的能力。这种方法简化了计算需求并提高了对数据噪声的鲁棒性,为分析 rsfMRI 数据提供了全面的工具。利用按估计参数缩放的功能连接矩阵,我们应用最先进的社区检测方法来阐明网络结构。我们的分析表明,在比较神经正常个体与自闭症谱系障碍 (ASD) 患者时,特定大脑区域的参与系数存在显著差异,男性和女性群体之间存在明显差异。这些差异与之前研究中涉及的区域一致,进一步证实了这些区域在 ASD 中的作用。通过将 PINN 与高级网络分析相结合,我们展示了一种分析 ASD 复杂神经特征的稳健方法,为神经成像和更广泛的计算神经科学领域的未来研究提供了一个有希望的方向。
摘要。静息状态功能磁共振成像 (rsfMRI) 产生的功能连接组可作为个人的认知指纹。连接指纹已被证明在许多机器学习任务中很有用,例如预测特定于受试者的行为特征或任务引起的活动。在这项工作中,我们提出了一种基于表面的卷积神经网络 (BrainSurfCNN) 模型,用于根据其静息状态指纹预测单个任务对比。我们引入了重建对比损失,以加强模型输出的受试者特异性,同时最大限度地减少预测误差。所提出的方法显著提高了预测对比在完善的基线上的准确性。此外,BrainSurfCNN 的预测也超过了受试者识别任务中的重测基准。5
图 1:使用 FUNCOIN 进行规范建模的示意图。A. 输入数据集包含来自英国生物库的大量健康和不健康受试者的测量数据。我们在大量健康受试者(训练数据,黑色,N = 32k)上训练我们的模型。在较小的样本外健康受试者子集(测试数据,绿色,N = 14k)上评估模型的通用性。在患有脑部疾病的受试者(粉红色)的现有数据上评估模型识别确诊受试者的能力。B. 训练数据产生脑部测量值规范分布的估计值(平均值 +/- 2 SD),这确定了脑部测量值的规范范围并允许识别异常值。C. 脑功能量化。我们旨在估计 rsfMRI FC 的规范模型,该模型计算为每对 ICA 成分/脑区域的时间序列的皮尔逊相关性。 D. FUNCOIN 在训练组中确定两个投影(g 1 ,g 2 ),使得它们的量级遵循(二维)线性模型(取对数后,参见方法)。个体(样本外)受试者偏差确定为 Z 分数(绿点和注释)。
功能磁共振成像(fMRI)的摘要最新进展有助于以前的早期产前和新生儿脑发育的无法访问的轨迹。迄今为止,胎儿 - 神经fMRI数据的解释依赖于线性分析模型,类似于成人神经成像数据。但是,与成人大脑不同,胎儿和新生大脑的发展迅速,超过了整个寿命的任何其他大脑发育期。因此,在沿着产前 - 神经期连续体的大脑发育的关键时期,传统的线性计算模型可能无法充分捕获这些加速且复杂的神经发育轨迹。为了获得对胎儿 - 神经性大脑发育的细微理解,包括非线性增长,我们首次开发了数量的,全系统范围的大脑对大脑活动的代表(胎儿(> 500)(> 500)的(> 500)的早产和完整的新生儿,使用了一种不受欢迎的模型,以优于替代的综合模型,以前陈述了一种模型(Vae),以前是一种模型(Vae),以前是一种模型(Vae),以前是一种模型(VAI),是一种模型,是一种模型,是一种模型)健康成年人的数据。在这里,我们证明了非线性脑特征,即潜在变量,该特征是在人类成年人的RSFMRI上预先介绍的,具有重要的个体神经特征,携带了重要的个体神经特征,从而改善了产前神经性脑脑成熟模式的表示,并具有更准确的和稳定的年龄预测与新生酸盐群体相比,并具有稳定的年龄预测。使用VAE解码器,我们还揭示了跨越感觉和默认模式网络的不同功能性脑网络。使用vae,我们能够可靠地捕获和量化复合物,非线性胎儿 - 神经性神经连通性。这将为详细绘制其起源于胎儿生活的健康和异常功能性脑签名的详细映射。