对于疑似中风入院的患者,NICE 关于 16 岁以上人群中风和短暂性脑缺血发作的指南:诊断和初步治疗建议立即使用经过验证的筛查工具 FAST 来评估突然出现神经系统症状的患者。入院时,使用经过验证的工具 ROSIER 来诊断中风或短暂性脑缺血发作。当怀疑短暂性脑缺血发作时,患者将服用 300 毫克阿司匹林并转诊给专科医生进行评估。不建议进行脑成像。疑似急性中风入院的患者应转诊至专科中风科。建议尽快在 24 小时内进行 NCCT。高风险人群应立即接受扫描。当怀疑急性缺血性中风且症状出现时间超过 6 小时前时,应进行 CTA 或 CTP。中风
计算机断层扫描(CT)扫描,于1970年代引入,标志着医学成像的开创性进步。由英国工程师Godfrey Hounsfield和物理学家Allan Cormack开发,CT扫描使用X射线梁创建大脑的横截面图像。这项技术比传统的X射线提供了更大的分辨率,使临床医生能够以更高的精度检测肿瘤,出血和结构异常。尽管具有优势,但CT成像的区分能力有限,并使患者暴露于电离辐射,从而促使人们寻找更安全,更详细的成像方法[2]。
背景和目标:阿尔茨海默病约占痴呆症病例的 70%。从 T1 加权结构磁共振扫描中可以轻松发现阿尔茨海默病引起的皮质和海马萎缩。由于在综合征的初期及时进行治疗干预对患病对象的病情进展和生活质量都有积极影响,因此阿尔茨海默病的诊断至关重要。因此,本研究依赖于开发一个强大而轻量级的 3D 框架 Brain-on-Cloud,该框架致力于通过改进我们最近的基于卷积长短期记忆的框架,并集成一组数据处理技术,以及调整模型超参数并评估其在独立测试数据上的诊断性能,从 3D 结构磁共振全脑扫描中有效学习与阿尔茨海默病相关的特征。方法:为此,在可扩展的 GPU 云服务上进行了四次连续实验。对它们进行比较,并调整最佳实验的超参数,直到达到最佳性能配置。同时,设计了两个分支。在 Brain-on-Cloud 的第一个分支中,在 OASIS-3 上进行训练、验证和测试。在第二个分支中,使用来自 ADNI-2 的未增强数据作为独立测试集,并评估 Brain-on-Cloud 的诊断性能以证明其稳健性和泛化能力。计算每个受试者的预测分数,并根据年龄、性别和简易精神状态检查进行分层。结果:在最佳状态下,Brain-on-Cloud 能够分别在 OASIS-3 和独立 ADNI-2 测试数据上以 92% 和 76% 的准确率、94% 和 82% 的灵敏度以及 96% 和 92% 的曲线下面积辨别阿尔茨海默病。结论:Brain-on-Cloud 是一种可靠、轻量且易于复制的框架,可用于通过 3D 结构磁共振全脑扫描自动诊断阿尔茨海默病,无需将大脑分割成各个部分即可表现出色。在保留大脑解剖结构的情况下,其应用和诊断能力可以扩展到其他认知障碍。由于其云特性、计算轻量和执行速度快,它还可以应用于实时诊断场景,提供及时的临床决策支持。
作者完整列表: Piri, Reza;奥登斯大学医院,核医学系;南丹麦大学,临床研究 Edenbrandt, Lars;哥德堡大学,分子与临床医学系,医学研究所,萨尔格伦斯卡学院 Larsson, Måns;Eigenvision AB Enqvist, Olof;Eigenvision AB;查尔姆斯理工大学,电气工程系 Nøddeskou-Fink , Amalie;奥登斯大学医院,核医学系 Gerke, Oke;奥登斯大学医院,系。核医学;南丹麦大学,系。临床研究 Høilund-Carlsen, Poul;奥登斯大学医院,核医学系
神经系统中的肿瘤疾病既危险又复杂。磁共振成像 (MRI) 对于检测脑部疾病至关重要;然而,从中识别肿瘤的存在非常耗时,需要专业医生。利用深度学习在 MRI 图像中检测肿瘤可以减少等待时间并提高检测准确性。我们提出了一种采用两个 U-Net 模型的方法:ResNeXt- 50 和 EfficientNet 架构,并结合特征金字塔网络 (FPN) 来分割脑肿瘤。这些模型是在 BraTS 2021 数据集上训练的,该数据集包含 3,929 张 MRI 扫描图像和 3,929 个相应的掩模,按 70:15:15 的比例分为训练集、测试集和评估集。结果表明,结合了 EfficientNet 和 FPN 的混合模型性能卓越,测试集上的平均交并比 (IoU) 准确率为 0.90,而 ResNeXt-50 为 0.50,Dice 准确率为 0.92,而 ResNeXt-50 为 0.66。此外,我们还开发了一个 Web 应用程序,实现了 EfficientNet 和 FPN 模型,方便医生从上传的 MRI 图像中轻松检测肿瘤。
不均匀对比度评分 (ICR) 优化 WM 段内的全局标准偏差,并通过最小问题对比度进行缩放;从 A+(质量优秀到 F 不可接受/质量失败)评分 均方根分辨率 (RES) 体素大小的均方根值;从 A+(质量优秀到 F 不可接受/质量失败)评分 加权平均图像质量评分 (IQR)
1美国威斯康星大学麦迪逊分校2美国康奈尔大学康奈尔大学的民用与环境工程3霍普金斯极限材料研究所,约翰·霍普金斯大学,美国4汤吉大学地理技术和地下工程的主要实验室,
建立的用于诊断肩cap骨骨折的成像方法是X射线,骨扫描,磁共振成像(MRI)和计算机断层扫描(CT),MRI是裂缝检测最敏感和最具体的方法。CT也具有很高的特异性,但灵敏度较低。但是,它通常比MRI更优于MRI,因为它更便宜且更容易获得(1,4,5)。高分辨率外围定量计算机断层扫描(HR-PQCT)代表检测scaphoid骨折的创新选择(6-8)。由于第一个结果直到最近才发布,因此在该领域尚未广泛建立其使用。最初,HR-PQCT旨在测量骨密度并量化骨骼的三维微构造(9)。由于几个原因,包括技术问题,扫描获取和评估缺乏标准化以及与成本相关的有限可用性,其临床价值仍处于边缘状态(10)。然而,近年来,HR-PQCT在许多科学领域都取得了重大进展,例如,在评估流变学疾病对关节表面的影响(11,12)(11,12),骨骼微体系结构和骨骼强度对次生骨质骨的骨骼和代谢性骨骼的影响(10),以及对骨骼的影响(10)的作用,以及对骨骼的效果,以及对骨骼的效果(均具有抗抗病性的作用)(均具有抗抗病性的作用(愈合(14-16)和远端半径裂缝机制的研究(17,18)。
每年,在世界各地的医院中都会获得数百万次脑电磁共振成像(MRI)扫描。这些有可能彻底改变我们对许多神经系统疾病的理解,但是由于它们的各向异性解决方案,它们的形态分析尚未实现。我们提出了一种人工智能技术,即“合成器”,该技术对任何MR对比度进行临床大脑MRI扫描(T1,T2等。),方向(轴向/冠状/矢状),并分辨出来,并将它们变成高分辨率T1扫描,这些T1扫描几乎可以通过所有现有的人类神经影像工具使用。我们介绍了> 10,000张对照和脑肿瘤,中风和阿尔茨海默氏病的对照组和患者的分割,注册和地培训的结果。合成子产生的传奇结果与高分辨率T1扫描所能获得的非常高度相关。Synthsr允许样本量有可能克服前瞻性研究的功率限制,并为健康和患病的人脑提供了新的启示。