摘要:使用三角大学核实验室中的中子束5至27 MeV,使用微琴探测器测量塑料闪烁体EJ-260的非线性能量响应。第一阶和二阶Birks的常数是从数据中提取的,发现为𝑘=(8。70±0。93)×10 - 3 g / cm 2 / mev和𝑘=(1。< / div>42±1。 00)×10-5(g / cm 2 / meV)2。 该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。 这些测量结果将改善塑料闪烁体检测器的能量非线性建模。 特别是,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。42±1。00)×10-5(g / cm 2 / meV)2。该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。这些测量结果将改善塑料闪烁体检测器的能量非线性建模。,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。
𝐼𝐴=𝐼!+𝐾&𝐴-积分PL强度是吸光度的线性函数。通过样品浓度不同的斜率“ K”与参考染料atto390-测量的PLQY相比,均通过不同浓度的斜率“ k”测量,测量的PLQY低于公司值(〜50%),这表明相位转移损失了一些PLQY均通过不同浓度的斜率“ k”测量,测量的PLQY低于公司值(〜50%),这表明相位转移损失了一些PLQY,测量的PLQY低于公司值(〜50%),这表明相位转移损失了一些PLQY
A.介电介质中闪烁偶极子排放过程的分析..................................................................................................................................................................................................................提取内部发射光谱𝑌𝑌(𝜔𝜔)和有效的偶极矩方| 𝝁𝝁 | 2 of dipole emitter .......................................................................................................... 7 C. Purcell effect in layered medium ............................................................................................ 9 II.Influence of dipole distribution on the scintillator performance ............................... 17 III.Influence of the loss of the scintillator on the Purcell factor and scintillator performance ........................................................................................................................... 18 IV.Photonic band structure calculation of one-dimensional photonic crystal .............. 20 V. Designs with realistic materials ..................................................................................... 22 VI.Influence of the fabrication error on the scintillation performance ........................ 25 VII.光电探测器的量子效率.......................................................................................................................................................................................................
A. A. Abusleme D,1,T。Adam D,2,S。Ahmad D,3,S。Aiello D,4,M。Akram D,3,N。Ali D,3,F。P. An D,M,M,M,5,G。P.anδ,7,G。Andronico D,4,N。Anfim Move d,8,V。Antonelli D,9,T。Antoshkina D,8,B。Asavapibhopd,10,J。P。A. P. A. M. De Andr´e d,2,A。Babicd,A.Babic D,A. Babic D,11,A.A.B. B. Balantekin M,12,W。BaldiniD,13,M。BaldonciniD,13,H。R。Band M,14,A。BarresiD,15,E。BaussanD,2,M。BellatoD,M。BellatoD,16,E。BernieriD,E。BernieriD,17,17,D。BiareD. Bishai M,19,S。Blin D,20,D。Blum D,21,S。Blyth D,M,M,22,C。Bordendeau D,23.24,A。Brigatti D,9,R。Brugnera D,R.Brugnera D,25,A。Budano D,17,P。Burgbacher D,P。Burgbacher D,P。 Busto d,26,I。Butorov D,8,A。Cabrera D,20,H。Cai D,27,X。Cai D,6,Y。K. Cai D,6,6,Z. Y. Cai D,6,A。CammiD,28,A。CampenyD,A。CampenyD,1,C.Y. Cao D,C.Y. Cao D,6,6,G。F. Cao d,M,6,R。Caruso D,4,C。Cerna D,23,I。Chakaberia d,29,J。F. Chang D,M,M,6,Y。Chang D,M,M,M,24,H。S. Chen,H。S. Chen,6,P。A. Chen D,22,P。P. P. P. Chen D,30,30,S。M. Chen D,S.M。Chen D,S.S. J. R. Chen D,33,Y。W. Chen D,34,Y。X. Chen D,M,35,Y。Chen D,M,M,36,Z。Chen D,6,J.Cheng D,M,M,M,6,Y. P. Cheng D,37,Z.K. K. K. K. K. K. K. K. K. K. K. K. K. K. K. K. Cheng M,36,A.Chepurnov D,A。ChepurnovD,A。Chepurnovd,38,J。J。J. J. J. J. Cherwinka M. Chiarello d,16,D。ChiesaD,15,P。ChimentiD,39,M.C.Chu,40,A。ChukanovD,8,A。Chuvashovad,8,。B. Hsiung D,M,22,B。Z. Hu D,M,22,H。Hu D,36,J。R. Hu D,M,M,6,J。Hu D,6,S。Y. Hu D,67,T。Hu D,M,M,6,Z. Huang D,2,W。H. Huang D,29,X。T. Huang D,M,29,Y。Clementi D,41,B。Clerbaux D,42,S。Conforti di Lorenzo D,20,D。Corti D,16,S。Costa D,4,F。D. Corso D,16,J。P. Cummings M,43,O。Dalager M,O。DalagerM,44,C。Dela Taille d,C。Dela Taille d,20,20,F。F. M,7,J。W。Deng D,27,Z。Deng D,31,Z. Y. Deng D,6,W。Depnering D,45,M。Diaz D,1,X。F. Ding D,9,Y。Y. Y. Y. Y. Ding d,M。 ,T。DohnalD,M,47,G。DonchenkoD,38,J.M.Dong D,31,D。DornicD,26,E。DoroshkevichD,48,J。DoveM,49,M。DracosD,2,F。DruilloleD,23,23,S.X。X.B. Huang D,M,6.54,P。HuberM,68,J。Q。Hui D,59,L。HuoD,55,W。J。Huo D,7,C。HussD,C。HussD,23,S。HussainD,3,S。HussainD,3,A.S.Insolia D,A. Insolia d,A。A.A. A. A. A. A. A. A. Ioananisian d,69,D.Iooannisisan D. Iooannisan d. iooannisan d.69,69,69,R。 Isocrate D,16,D。E. Ja效应M,19,K。L. Jen D,M,34,X。L. Ji d,M,M,6,X。P. Ji M,19,X。X. B. li d,m,36,Z。Y. li d,36,H。Liang D,67,H。Liang d,M,7,J。J. Liang d,54,D.Liebau D,60,A.Limphirat D,46,S。Limpijuntong D,S。Limpijumnong D,46,46,C。J. Lin,C。J. Lin,C. J. L.,51,51,51,51,51,G。L. 34; H. Liu D, 61, H. B. Liu D, 54, H. D. Liu D, 50, H. J. Liu D, 77, H. T. Liu D, 36, J. C. Liu D, M, 6, J. L. Liu D, M, 59.78, M. Liu D, 77, Q. Liu D, 79, Q. Liu D, 7, 7, R. X. Liu D,6,S。Y. Liu D,6,S。B. Liu D,7,S。L. Liu D,6,X。W. Liu D,36,Y。Liu D,6,A。Lokhov D,38,P.Lombardi D,P.Lombardi D,9,K。 D,58,H。Q. lu D,M,6,J。B. Huang D,M,6.54,P。HuberM,68,J。Q。Hui D,59,L。HuoD,55,W。J。Huo D,7,C。HussD,C。HussD,23,S。HussainD,3,S。HussainD,3,A.S.Insolia D,A. Insolia d,A。A.A. A. A. A. A. A. A. Ioananisian d,69,D.Iooannisisan D. Iooannisan d. iooannisan d.69,69,69,R。 Isocrate D,16,D。E. Ja效应M,19,K。L. Jen D,M,34,X。L. Ji d,M,M,6,X。P. Ji M,19,X。X.B. li d,m,36,Z。Y. li d,36,H。Liang D,67,H。Liang d,M,7,J。J. Liang d,54,D.Liebau D,60,A.Limphirat D,46,S。Limpijuntong D,S。Limpijumnong D,46,46,C。J. Lin,C。J. Lin,C. J. L.,51,51,51,51,51,G。L. 34; H. Liu D, 61, H. B. Liu D, 54, H. D. Liu D, 50, H. J. Liu D, 77, H. T. Liu D, 36, J. C. Liu D, M, 6, J. L. Liu D, M, 59.78, M. Liu D, 77, Q. Liu D, 79, Q. Liu D, 7, 7, R. X. Liu D,6,S。Y. Liu D,6,S。B. Liu D,7,S。L. Liu D,6,X。W. Liu D,36,Y。Liu D,6,A。Lokhov D,38,P.Lombardi D,P.Lombardi D,9,K。 D,58,H。Q. lu D,M,6,J。du d,50,S。DusiniD,16,M。DvorakD,M,47,D.A.Dwyer M,51,T。Enqvist D,52,H。Enzmann D,45,A。Fabbri D,17,L。 Fang D,6,A。Fatkina D,8,D。Fedoseev D,8,V。Fekete D,11,L。C. Feng D,34,Q. C. Feng D,55,G。Fiorentini D,13,R。Ford D,9,A。Ford d,9,A。Formozov D,A。Formozov D,9,9,9,9,9,A。Fornnierd,A。Fournierd,S。FrankeD,S。FrankeD,56,56,56,56,56,56,56,56,56,S。 J. P. P. Gallo M,57,H。N。Gan D,58,F。GaoD,18,A。GarfagniniD,25,A。GlarchiD,9,A。GiazD,25,25,N。GiudiceD,4,F。GiulianiD,F。GiulianiD,59,M。M. Gonchar D,8,G。H. D,50,Y。Gu D,61,M。Y. Guan D,6,N。Guardone D,4,M。Gul D,3,C。Guo D,6,J。Y. Guo D,M,M,36,L。Guo M,L。Guo M,31,W。L. Guo D,W。L. Guo D,6,6,6,X。H. Guo D,M,M,M,M,62,Y. Guo D,Y. Guo D,63.337,Z.。 Guo M,31,M。HaackeD,1,R。W。Hackenburg M,19,P。HackspacherD,45,C。HagnerD,64,R。HanD,65,Y。Han D,Y。Han D,20,S.Hans M,19.1,M。HeD,M。He D,M,M,M,M,M,M,6,W。He d,W。He d,6,K。M. M. Heeger M,Heeger M,M. Heeger M,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,T.。 Heinz D,21,Y。K. Heng D,M,6,R。Herrera D,1,A.Higuera M,66,D。J. Hong D,54,Y。K. Hor,Y。K. Hor,36,S。J. Hou D,6,Y.B. Lu D, 81, J. G. Lu D, 6, S. X. Lu D, 50, X. X. LU D, 6, B. Lubsandorzhiev D, 48, S. Lubsandorzhiev D, 48, L. Ludhova D, 37.18, K. B. Luk, 73.51, F. J. Luo D, 6, 6, 6, 6, G. Luo D,36,P。W. Luo D,36,S。Luo D,82,W。M. Luo D,6,V。Lyashuk D,48,Q.M. M. Ma D,6,S。Ma D,6,6,X.Z.jiδ,36,H。H.Jiaδ,70,J。J.Jiaδ,27,S。Y.Jianδ,67,D。Jiangδ,7,X。S.Jiangδ,6,R。yinδ,6,6,6,X。 µ,72,J.Joutsenvaaraδ,52,S。Jungthawanδ,46,L。Kalousisδ,2,P。Kampmannδ,37.18,L。KangΔ,µ,30,M。Karagounisδ,60,60,N。Kazarianδ,S。H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. 36.,A。khan,A。 W.Khanδ,63,K。Khosonthongkeeδ,46,P.KinzΔ,34,S。Kohnµ,73,D.KorableVδ,8,K。KouzakovΔ,38,M。Kramerµ,51.73,51.73,A.A.KrasnoperovΔ krumshteynδ,8,A。Kruthδ,60,N。kutovskiyδ,8,P。Kuusiniemiδ,52,B。Lachacinskiδ,23,T。LachenmaierΔ,21,T。J。J. J. J. Langford µ,14,J.Lee µ,J.Lee µ,51,J.H。C. H. C. H. C. H. C. Leeμ δ,75,L。Leiδ,31,R。Leδ,30,R。Leitnerδ,47,J。Leungδ,74.34,C。Liδ,29,D。M。Liδ,50,F。Δ δ, 6, J. J. Li µ, 31, J. Q. Li δ, 36, K. J. Li δ, 36, M. Z. Li δ, 6, N. Li δ, 76, N. LI δ, 6, Q. Li δ, 76, Q. J. Li µ, 6, R. H. li δ, 6, S. C. Li, 68, J.Liδ,T。Liδ,T。Liδ,W。D.Liδ,6,W。G.Liδ,67,X。B. Ma D,M,35,X。Y. Ma D,M,6,Y。Q. Ma,6,Y。Malyshkin D,17,F。Mantovani D,13,Y。J. Mao D,83,S.M。Mari D,S.M。Mari D,17,F。Marini D,F。Marini D,F。Marini D,25,S。Marium d,S.Marium d,3,C.Marshall,C.Marshall,C.Marthall,C.Marthall,C.Marthall,C.Marthall,C.Marthall,C.Marthall,C.Marthall,51,C.Marthalliii D,17,G。Martin-Chassard D,20,D。A。Martinez Caideo M,57,A。MartiniD,84,J。MartinoD,75,D。MayilyanD,69,K。T。McDonald M,80,R。D。McKeown M,R。D。McKeown M,85,86,85,86 16,Y。MengD,M,59,A。Meregaglia D,23,E。Meroni D,9,D。MeyhéoferD,64,M.Mezzetto D,16,J。MillerD,87,L。MiramontiD,9,9,S。MonforteD,S。MonforteD,4,4,
闪烁显像和荧光镜面X射线成像的组合可以使涉及放射性核素(例如无线电栓塞)的较短,更容易的介入程序。由于同时获得解剖和核信息,这可能会减轻患者的负担并简化医院的结构。虽然已经可以使用各种多模式成像技术,并且使用\ cite {cherry2009multimotalization},但这种新方法在临床C-arm \ cite \ cite {van2019dual}上直接将伽马摄像头安装在平面X射线检测器后面。该混合C臂用于介入X射线和闪烁显像成像(IXSI)的优点包括紧凑的设计和自然良好的图像对齐。但是,仍然需要解决一些缺点,尤其是伽马摄像头\ cite {koppert2018 impact}中X射线诱导的盲目效应。到今天为止,大多数临床伽马相机都使用NAI(TL)作为闪烁体。该材料具有相对较高的后光,在每个X射线脉冲之后产生一个背景信号。这种高背景掩盖了伽马光子产生的信号,该信号由radionuclide \ cite {koppert2019 comparative}发出。因此,这项研究的重点是寻找具有与NAI(TL)相似的属性但余热较低的闪烁体。找到了这样的,进行了IXSI混合C型臂检测器的一系列栅极模拟,其中计算了十二种不同的闪烁材料的典型X射线扫描,伽马相机中的能量沉积。 选择了最高的信噪比比率的五个闪烁体进行进一步的内部测试。,进行了IXSI混合C型臂检测器的一系列栅极模拟,其中计算了十二种不同的闪烁材料的典型X射线扫描,伽马相机中的能量沉积。选择了最高的信噪比比率的五个闪烁体进行进一步的内部测试。从每种类型的晶体中的X射线能量沉积中,可以估计闪烁的光发射和余辉。随后将余辉强度与同一闪烁材料中的单个140 keV光子产生的光信号进行比较,通过计算X射线脉冲后100 ms的140 keV光子和余潮引起的光的比率。这些是CEBR3,CDWO4,NAI(TL,Y,SR),NAI(TL,SR)和CSI(TL,SB,BI)。从这些,NAI(TL,Y,SR),NAI(TL,SR)和CSI(TL,SB,BI)是新开发的材料。内部测量值至少包括余辉,衰减时间和能量分辨率测量。将在会议上介绍仿真的广泛结果,并将在内部测量结果带来。
cc0pi信号定义(中微子模式):一种负电荷的muON,零亲和在最终状态下检测到的任何数量的哈德子,其中在FGD1(scintillator)中重建了顶点(scIntillator)fimial formial量
• 196 mm 2 high sensitivity plastic scintillator detector • Range of average energies of detected beta radiation: 0.049 ÷ 1.508 MeV • Range of maximum energies of detected beta radiation: 0.156 ÷ 3.540 MeV • Energy range of detected photon radiation: 0.05 ÷ 3.0 MeV • Measurement range of beta radiation flux density: 1.0 ÷ 1.0·10 6 min -1 cm -2
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
Fischione 3000 型 ADF 探测器闪烁体:钇铝钙钛矿晶体光导:石英圆柱体,连接到光电倍增管,将光子转换回电流。
伽玛射线对象:了解伽玛射线与物质的各种相互作用。使用已知能量的伽马射线校准伽马射线闪烁光谱仪,并使用它来测量“未知”伽马射线的能量。使用正电子歼灭辐射来确定电子的质量并观察相关的伽马射线。读数:实验室手册(请参阅补充阅读)“核科学实验” AN34,EG&G ORTEC提供了有关许多本科核试验的背景和技术的精彩动手讨论。所描述的设备类似于实验室中可用的设备。在本文末尾给出了其他读数。设备:NAI:具有集成前置放大器(2),高压电源,堪培拉型号2000电源的TL闪烁体和光电倍增管检测器,NIM BIN,NIM BIN,NIM BIN,CANBERRA 2015A放大器/单通道分析仪模块(2) (PCA-II)CompuAdd 286个人计算机,Analyzer软件,监视器的董事会。背景:在本实验中,您将通过检测腐烂产生的伽马射线来研究核的放射性衰变。γ射线检测是一个多步骤过程:伽马射线进入NAI:TL闪烁体晶体,在其中产生了快速移动的自由电子,进而通过在晶体中行驶时在路径中激发离子而失去能量。这种激发能以各种方式释放出来,其中一种是可见光的发射(荧光)。因此,进入闪烁体的单个高能伽马射线会产生低能光子的闪光。这些光子针对光电倍增管的光敏表面,它们通过光电效应弹出电子。电子被收集在光电培养基中并放大以产生电流脉冲,该脉冲转换为电压脉冲,其高度与光电子的数量成正比,因此与到达管的光子数量成正比,这又与快速电子的初始能量成正比。当放射性源位于闪烁体附近时,光电层流会产生一系列脉冲,每个脉冲对应于单个核的衰变。每个脉冲的幅度与伽马射线释放的电子能量有关。使用单通道分析仪研究这些脉冲。单个通道分析仪(SCA)计数电压脉冲的数量