动力学核极化(DNP)是一种强大的方法,它允许通过微波辐照电子Zeeman跃迁来传递电子极化,从而使几乎任何旋转核的核对任何旋转核的核两极化。在某些条件下,可以使用热混合(TM)模型以热力学术语描述DNP过程。不同的核物种可以通过与电子旋转的相互作用并达到共同的自旋温度间接交换能量。在质子(H)和氘(D)核之间可能发生这种“串扰”效应,并在脱离和重新偏振实验中发生。在这项工作中,我们将这种效应在实验中,使用质子化或剥离的tempol自由基作为偏振剂。对这些实验的分析基于普罗威尔托洛罗的方程式,可以提取相关的动力学参数,例如不同储层之间的能量传递速率以及非Zeman(NZ)电子储量的热容量,而Proton和Deuterium Reservoirs的热能可以基于其估计的表现。这些参数允许人们对杂核的行为(例如碳-13或磷-31)进行预测,但前提是它们的热容量可以忽略不计。最后,我们介绍了Propotorov动力学参数对Tempol浓度和H/D比的依赖性的实验研究,从而提供了对“隐藏”自旋的性质的洞察力,由于它们与自由基的接近,这些自旋的性质无法直接观察到。
为了模拟 NV 自旋对 MW 场(特别是磁场分量)的响应,使用量子主方程方法推导出理论方程。在室温下,NV 自旋包含 NV − 的基态和激发自旋三重态、NV − 的两个中间态以及两个 NV 0 态。由于 1 A 1 的自旋寿命远小于 1 E 的寿命(参见正文),因此单重态实际上被假定为一个状态(1 E)。NV 0 态的包含解释了导致电荷状态切换的电离效应。在 NV 0 态下,它可以被光泵送回 NV − 的基态三重态。图 S.I.1 显示了由九个能级组成的 NV 能量图。如果忽略电离效应,在简并三重态的情况下,可以使用具有更少能级的更简单的模型。建模 ODMR 的基本状态是 NV − 的基态、中间态和激发态。但是,由于 NV 0 和 NV − 之间的跃迁速率
我们实施了Honerkamp和Salmhofer [Phys。修订版b 64,184516(2001)]进入了量子自旋系统的伪摩霍拉纳功能重新归一化组方法。由于这种方法的重新归一化组参数是物理量,因此与更常规的重新归一化组参数相比,温度t,数值效率显着提高,尤其是在计算限制性 - 温度相图时。我们首先采用此方法来确定简单的立方晶格上J 1 -j 2 Heisenberg模型的有限温度相图,在此,我们的发现支持了围绕高挫折点J 2 = 0的消失的小型非磁相的主张。25 J 1。 也许最重要的是,我们发现温度流方案在检测有限的平移过渡方面是有利的。 最后,我们将温度流方案应用于方格上的偶极XXZ模型,在那里我们找到了具有较大非磁性状态的丰富相图,以至于最低的可访问温度。 在适用于错误控制的(量子)蒙特卡洛方法的比较时,我们发现了出色的定量一致性,与数值确切的结果相比偏差不到5%。25 J 1。也许最重要的是,我们发现温度流方案在检测有限的平移过渡方面是有利的。最后,我们将温度流方案应用于方格上的偶极XXZ模型,在那里我们找到了具有较大非磁性状态的丰富相图,以至于最低的可访问温度。在适用于错误控制的(量子)蒙特卡洛方法的比较时,我们发现了出色的定量一致性,与数值确切的结果相比偏差不到5%。
日本福冈——在《Science Advances》杂志上发表的一项研究中,九州大学工程学院副教授柳井伸宏领导的一组研究人员与九州大学宫田清副教授和神户大学小堀康弘教授合作,报告称他们已经在室温下实现了量子相干性:量子系统能够随着时间的推移保持明确状态而不受周围干扰影响的能力。这一突破是通过将发色团(一种吸收光并发射颜色的染料分子)嵌入金属有机骨架(MOF,一种由金属离子和有机配体组成的纳米多孔晶体材料)中实现的。他们的发现标志着量子计算和传感技术的重大进步。虽然量子计算被定位为计算技术的下一个重大进步,但量子传感是一种利用量子比特(经典计算中比特的量子类似物,可以存在于 0 和 1 的叠加中)量子力学特性的传感技术。可以采用各种系统来实现量子比特,其中一种方法是利用电子的固有自旋(与粒子磁矩相关的量子特性)。电子有两种自旋状态:自旋向上和自旋向下。基于自旋的量子比特可以存在于这些状态的组合中,并且可以“纠缠”,从而允许从另一个量子比特推断出一个量子比特的状态。通过利用量子纠缠态对环境噪声极其敏感的特性,量子传感技术有望实现比传统技术更高的分辨率和灵敏度的传感。然而,到目前为止,将四个电子纠缠并使其对外部分子作出反应,即使用纳米多孔 MOF 实现量子传感一直具有挑战性。值得注意的是,发色团可用于在室温下通过称为单重态裂变的过程激发具有所需电子自旋的电子。然而,在室温下会导致存储在量子比特中的量子信息失去量子叠加和纠缠。因此,通常只有在液氮水平温度下才能实现量子相干性。为了抑制分子运动并实现室温量子相干性,研究人员在 UiO 型 MOF 中引入了基于并五苯(由五个线性稠合苯环组成的多环芳烃)的发色团。“这项研究中的 MOF 是一种独特的系统,可以密集地积累发色团。此外,晶体内的纳米孔使发色团能够旋转,但角度非常受限,”Yanai 说道。
1。简介compution countientation在包括机器人技术和航空设备在内的许多领域中,刚体的方向是一项重要任务。特定于机器人技术,定向在许多工业,医疗和手术应用中起着基本作用。各种方法通常用于建模和表示刚体的方向,例如球形坐标和欧拉角,或偏航,俯仰和滚动(YPR)角度。这些方法使用3 3个矩阵来保存三个单元向量的投影坐标,从而使它们成为内存和资源密集型。相比之下,还开发了紧凑的方法,例如四季度和双重四季度。此代表仅使用四个组件:一个真实和三个虚构部分。上述所有方法已成功用于多个应用程序;
开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。局部信息通过创建复杂的关联(称为信息扰乱)在系统中传播,因为此过程阻止从局部测量中提取信息。在这项工作中,我们开发了一个改编自固态 NMR 方法的模型来量化信息扰乱。扰乱是通过时间反转 Loschmidt 回波 (LE) 和多重量子相干实验来测量的,这些实验本质上包含缺陷。考虑到这些缺陷,我们推导出非时间序相关器 (OTOC) 的表达式,以基于测量信息传播的活跃自旋数量来量化可观察的信息扰乱。基于 OTOC 表达式,退相干效应自然是由 LE 实验中未反转项的影响引起的。退相干会导致可测量程度的信息扰乱的局部化。这些效应定义了可观测的活跃自旋数量的局部化簇大小,从而确定了动态平衡。我们将模型的预测与使用固态 NMR 实验进行的量子模拟进行了对比,该实验测量了具有受控缺陷的时间反转回波的信息扰乱。从实验数据确定的量子信息扰乱的动态和其局部化效应之间具有极好的定量一致性。所提出的模型和派生的 OTOC 为量化大型量子系统(超过 10 4 个自旋)的量子信息动态提供了工具,与本质上包含缺陷的实验实现一致。
自旋分子是量子技术很有前途的构建模块,因为它们可以进行化学调节,组装成可扩展的阵列,并可轻松整合到各种设备架构中。在分子系统中,光学寻址基态自旋将使量子信息科学得到广泛应用,正如固态缺陷所证明的那样。然而,这一重要功能对于分子来说仍然难以实现。在这里,我们在一系列合成的有机金属铬 (IV) 分子中展示了这种光学寻址能力。这些化合物显示出基态自旋,可以用光初始化和读出,并用微波进行相干操控。此外,通过对分子结构的原子修饰,我们可以调整这些化合物的自旋和光学特性,为自下而上合成设计量子系统铺平了道路。
受量子点核自旋控制和操纵方面的最新进展的启发,这些进展允许将电子自旋态转移到周围的核自旋集合中进行存储,我们提出了一种量子中继器方案,该方案结合了单个量子点电子自旋和核自旋集合,分别用作自旋光子接口和量子存储器。我们考虑使用嵌入高协同性光学微腔中的低应变量子点。量子点核自旋集合允许长期存储纠缠态,并且预示着纠缠交换是使用腔辅助门执行的。我们重点介绍了实现量子中继器方案所需的量子点技术的进步,该方案有望建立长距离高保真纠缠,其分布速率超过光子的直接传输。
我们来看一下这些分子构建块的组成和它们的特性。它们每个都由一到几个磁性离子组成,由有机配体分子壳稳定和保护(图 1)。有效基态为 S = 1/2 的分子提供了最简单的量子比特实现,但是,如下所述,还存在许多其他有吸引力的可能性。我们的目的是讨论此类分子构建块在实现大规模量子计算方面的潜力,以及它们为实现某些特定应用所提供的优势。我们考虑了两种扩大规模的替代方案,如图 1 所示。第一种方法基于阵列中不同量子比特之间的不对称性(例如,每个量子比特具有不同的频率)以及它们之间的相互作用。随后的能级非谐性允许人们通过简单地选择作用于整个阵列的共振电磁脉冲的适当频率(或“颜色”)来解决每个操作。这种策略允许通过“化学”进行扩展,即在每个分子内进行扩展。第二种选择涉及对每个量子比特及其与其他量子比特的相互作用进行局部控制。它依赖于控制和连接单个分子自旋这一极具挑战性的目标。
