口服鳞状细胞癌(OSCC)是一个至关重要的公共卫生问题,约占全球所有癌症的2%,全球90%的口服恶性肿瘤。不幸的是,尽管手术,放疗和化学疗法技术在过去几十年中取得了成就,但OSCC患者仍然较低5年生存率。顺铂是一种含铂的药物,是OSCC的第一线化学治疗剂之一。然而,对顺铂的抗性显着限制了临床实践,并且是常规处理后肿瘤复发和转移的关键因素。铁凋亡是一种基于铁的细胞死亡形式,它是由脂质过氧化和活性氧(ROS)的细胞内积累引发的。有趣的是,与敏感细胞相比,抗顺铂的OSCC细胞表现出较低的ROS和脂质过氧化。顺铂耐药细胞中的毛细毒性减少表明顺铂耐药性与铁凋亡之间的潜在关系,这证明了最近的研究表明,在结直肠癌细胞中。然而,OSCC细胞中逆转顺铂耐药性的铁凋亡的调节途径仍不清楚。本文旨在简单地总结分子机制,并评估铁胞菌病和顺铂耐药性OSCC细胞之间的关系,从而提供了克服顺铂耐药性并开发新的治疗方法的新型策略。
最佳护理路径描述了澳大利亚所有接受治疗的癌症患者应获得的护理标准。这些路径支持患者和护理人员、卫生系统、卫生专业人员和服务,并鼓励在患者旅程的每个阶段始终如一地进行最佳治疗和支持性护理。路径中提供的指导基于七项关键原则:以患者为中心的护理;安全和优质的护理;多学科护理;支持性护理;护理协调;沟通;以及研究和临床试验。
摘要目的:鳞状细胞癌(SCC)代表了所有头颈恶性肿瘤中最常见的组织类型,包括口咽鳞状细胞癌(OSCC),这是一种与不同的临床结果相关的肿瘤,并与人类乳头状瘤病毒(HPV)状态有关。转化研究几乎没有可用的体外模型来研究OSCC的不同病理生理行为。本研究提出了基于3维(3D)仿生胶原蛋白的支架,以模仿肿瘤微环境和细胞外基质(ECM)和癌细胞之间的串扰。方法:我们比较了在公共单层支持和脚手架上培养的HPV阳性和HPV阴性OSCC细胞系的表型和遗传特征。我们还探索了癌细胞对3D微环境的适应,及其对在细胞系和原发性培养物上测试的药物的疗效的影响。结果:HPV阳性和HPV阴性细胞系在3D模型中成功生长,并显示了不同的胶原纤维组织。3D培养物引起与上皮 - 间质转变(EMT)和基质相互作用相关的标记表达的增加,并显示出不同的迁移行为,如斑马鱼胚胎异种移植所证实。缺氧诱导因子1α(1α)和糖酵解标记的表达表明脚手架区域内缺氧微环境的发展。此外,3D培养物激活了细胞系和原代培养物中的药物抗药性信号通路。结论:我们的结果表明,基于胶原蛋白的支架可能是繁殖OSCC的病理生理特征的合适模型。此外,3D结构似乎能够诱导抗药性过程,以更好地研究我们对HPV阳性和HPV阴性患者OSCC的不同临床结果的理解。关键字口咽鳞状细胞癌;胶原;仿生支架;斑马鱼;抗药性;初级文化
皮肤鳞状细胞癌 (cSCC) 是具有转移潜能的最常见癌症类型之一。microRNA 在转录后水平调节基因表达。在本研究中,我们报告 miR- 23b 在 cSCC 和光化性角化病中下调,并且其表达受 MAPK 信号通路调控。我们发现 miR-23b 抑制与关键致癌途径相关的基因网络的表达,并且 miR-23b 基因特征在人类 cSCC 中富集。miR-23b 降低了 FGF2 在 mRNA 和蛋白质水平的表达,并削弱了 cSCC 细胞的血管生成诱导能力。miR23b 过表达抑制了 cSCC 细胞形成集落和球体的能力,而 CRISPR/Cas9 介导的 MIR23B 缺失导致体外集落和肿瘤球形成增加。与此一致,miR-23b 过表达的 cSCC 细胞在注射到免疫功能低下的小鼠体内后,形成的肿瘤明显较小,细胞增殖和血管生成减少。从机制上讲,我们证实 RRAS2 是 miR-23b 在 cSCC 中的直接靶标。我们表明 RRAS2 在 cSCC 中过表达,干扰其表达会损害血管生成和集落和肿瘤球的形成。总之,我们的结果表明 miR-23b 在 cSCC 中以肿瘤抑制的方式发挥作用,并且在鳞状细胞癌变过程中其表达会降低。
选择性颈部解剖(END)被视为口服鳞状细胞癌(OSCC)治疗的标准实践,其特征是全球范围内的发病率和死亡率很高(1)。然而,对于早期OSCC患者而言,仍然很难确定,因为一些研究表明终点提高了患者的存活率,其他研究表明差异并不显着(2-4)。根据先前的评估,CT1-2N0M0 OSCC的隐匿性宫颈转移比约为20%(5)。为了在临床节点阴性OSCC患者中获得临床益处和过度治疗之间的平衡,建立了几种用于隐匿性宫颈转移诊断的预测模型。例如,Mermod等。(6)报告了一个基于CD31,Prox1检查和相关组织学参数的模型,该模型在曲线(AUC)下达到了0.89的面积,准确性为0.88。但是指示标记的免疫组织化学评分是相对的。Sinha等。(7)使用声辐射力冲动成像进行了类似的工作,这也实现了
细胞每天都会经历内源性和外源性的DNA损伤。为了维持基因组的完整性并抑制肿瘤发生,个体在进化过程中获得了一系列修复功能,称为DNA损伤反应(DDR),以修复DNA损伤并确保遗传信息的准确传递。DNA损伤修复途径的缺陷可能导致各种疾病,包括肿瘤。越来越多的证据表明,DDR相关基因的改变,例如体细胞或种系突变、单核苷酸多态性(SNP)和启动子甲基化,与头颈部鳞状细胞癌(HNSCC)的发生、发展和治疗密切相关。尽管最近在手术联合放疗、化疗或免疫治疗方面取得了进展,但HNSCC患者的生存率并没有实质性的提高。因此,针对DNA修复途径可能是治疗HNSCC的一种有前途的方法。在这篇综述中,我们总结了DNA损伤的来源和DNA损伤修复途径。此外,还重点关注了DNA损伤修复通路在HNSCC发展中的作用以及针对这些通路的小分子抑制剂在HNSCC治疗中的应用。
每年约有 500,000 例头颈部鳞状细胞癌 (HNSCC) 新病例。放射疗法是口腔鳞状细胞癌 (OSCC) 的重要治疗方法。几十年来,HNSCC 患者的生存率一直很低 (50%),因为 HNSCC 细胞的放射抗性导致放射治疗失败。本研究旨在确定可以增强放射敏感性的 PI3K 抑制剂。结果表明,泛磷酸肌醇 3-激酶 (PI3K) 抑制剂 BKM120 和 I 类 α 特异性 PI3K 抑制剂 BYL719 以剂量依赖性方式降低 OSCC 细胞的生长,但没有降低放射抗性的 OML1-R 细胞的生长。BKM120 或 BYL719 与放射联合治疗对 OSCC 细胞和放射抗性的 OML1-R 细胞具有增强的抑制作用。此外,联合治疗的增强抑制作用在患者来源的 OSCC 细胞中得到证实。 mTOR抑制剂AZD2014与BKM120或AZD2014与BYL719联合放射治疗对放射抗性的OML1-R细胞的抑制作用明显增强,提示PI3K抑制剂是治疗口腔鳞状细胞癌的潜在放射敏感性治疗药物。
在精确肿瘤学的背景下,离体药物筛查的目的是作为一种直接在患者衍生的肿瘤细胞上进行治疗效率建模的功能诊断方法。在这里,我们报告了一项使用综合多组学的离体药物筛查方法来评估腮腺罕见转移性鳞状细胞癌中的效率的案例研究。肿瘤细胞,远端皮下转移用于基于成像的单细胞分辨率药物筛查和基于反相蛋白阵列的药物筛查测定法,以在标准治疗选择后耗尽了治疗策略,以告知治疗策略。通过组织病理学,基因组促进和体外细胞生物学方法和具有持久临床反应的靶向治疗方法,通过离体测量的药物效率发现了发现的药物靶标。这些结果表明,在治疗前和治疗期间使用串行的离体药物筛查为辅助治疗方案提供了信息,并在唾液腺转移性鳞状细胞癌中强调了HER2作为潜在的治疗靶标。
引言。外阴鳞状细胞癌 (VSCC) 是一种罕见的恶性肿瘤,发病率不断上升,尤其是在年轻女性中。VSCC 的手术治疗与高发病率和高复发率有关,这与区分(前)恶性组织和健康组织的能力有限有关。需要新的工具来实时检测隐匿性肿瘤病变并定位 VSCC 患者的癌症边缘。已经开发了几种肿瘤特异性成像技术,通过靶向肿瘤标志物来识别恶性组织。我们提出了一项系统综述,以识别、评估和总结 VSCC 肿瘤特异性成像的潜在标志物。方法。在经验丰富的图书管理员的帮助下,通过系统跨数据库文献检索确定了相关论文。数据从符合条件的论文中提取,并根据系统评价和荟萃分析的首选报告项目 (PRISMA) 指南进行报告。VSCC 特异性肿瘤标志物的价值基于加权评分系统,其中每种生物标志物根据排名资格标准获得积分:I)表达百分比、II)样本量和 III)体内应用。结果。共纳入 627 篇论文,其中 22 篇符合资格标准。确定了 12 种 VSCC 特异性肿瘤标志物,其中 7 种生物标志物被认为最有前景:EGFR、CD44v6、GLUT1、MRP1、MUC1、CXCR-4 和 VEGF-A。讨论。本概述确定了 7 种潜在生物标志物,可用于开发 VSCC 特异性示踪剂,以便在治疗前、治疗期间和治疗后实时精确定位肿瘤组织。这些生物标志物是在少数样本中发现的,没有区分 VSCC 特有的特征,例如 HPV 状态。在临床开发之前,实验研究应首先使用免疫组织化学和基于细胞系的检查来验证这些生物标志物,以区分 HPV 状态和淋巴结和前体病变中的表达率。© 2019 由 Elsevier Inc. 出版。
结果:根据RECIST标准,三分之一的患者对NAB-甲氟甲酰胺有显着反应,而五分之一的患者没有明显的益处。根据投影> 1和折叠变化> 2的可变重要性的标准,我们分别确定了渐进疾病(PD)与部分反应(PR),PD与稳定疾病(SD)和SD VS VS VS VS PR组之间的61、81和54差异代谢物。此外,我们在逻辑回归模型和ROC诊断曲线中使用了三种变异来识别最佳代谢物,以分层化学治疗反应不同的患者。The PD vs SD, SD vs PR, and PD vs PR groups were well separated on the basis of cis-9,10-epoxystearic acid/octapentaenoic acid (AUC 0.9330), salicyluric acid/DG (18:1/20:5/0:0) (AUC 1.0000) and D-glyceric acid/9,12-octadecadienoic acid (AUC分别为1.0000)。