扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
摘要/工作范围 本文介绍了 Amkor Technology、Panasonic Factory Solutions 和 Spansion 在封装层叠 (PoP) 板级可靠性 (BLR) 领域进行的三方联合研究的结果。[BLR 在行业内也称为二级或焊点可靠性]。虽然 PoP 在手持便携式电子应用中呈指数级增长,但正如 iSuppli [1] 和其他公司所报告的那样,迄今为止,PoP BLR 数据都是针对客户特定的,无法在行业发布。存在大量公司内部和行业数据,可帮助优化 0.5mm 间距、无铅细间距 BGA (FBGA) 或芯片级封装 (CSP) 中的 BLR 性能设计。此外,正如 Scanlan、Syed、Sethuraman 等人 [2] 所报告的那样,0.4mm 间距 CSP 中出现了新的工作。但是,针对从顶部到底部的 PoP - BGA 接口可靠性的行业数据对于设计人员规划新的 PoP 应用或配置至关重要。此外,需要数据来验证当前底部 0.5mm 间距 BGA 到主板接口无铅可靠性性能的最佳实践是否仍然适用于 PoP 堆叠结构。本次合作研究的目标是:• 比较流行的无铅球合金和 BGA 基板焊盘涂层,以确定哪种焊点和 BGA 焊盘涂层结构对 BGA 接口表现出最佳的 BLR 成本/性能平衡。• 建立合作的 PoP 供应链关系,以生成适用的 BLR 数据并使其广泛提供给行业。• 确保生成的 PoP BLR 数据是全面的 - 基于对顶部、底部封装和最终 PWB 组装的大批量设计和可制造性考虑。
a 哈尔滨工业大学计算机科学与技术学院,哈尔滨,中国 b LINEACT CESI,里昂 69100,法国 c 埃法特大学电气与计算机工程系,吉达 22332,沙特阿拉伯 d Persistent Systems Limited,那格浦尔,印度 e AGH 科技大学生物控制论与生物医学工程系,克拉科夫,波兰 f 克拉科夫理工大学计算机科学与电信学院计算机科学系,华沙 24,31-155,克拉科夫,波兰 g 波兰科学院理论与应用信息学研究所,Ba ł tycka 5,44-100,格利维采,波兰 h EIAS 数据科学实验室,苏丹王子大学计算机与信息科学学院,利雅得 11586,沙特阿拉伯 i 梅努菲亚大学理学院数学与计算机科学系,32511,埃及j 埃及梅努菲亚大学计算机与信息学院信息技术系
摘要:单壁碳纳米管(SWCNTS)的捆绑显着破坏了它们的出色热和电性能。意识到稳定,均匀和表面活性剂 - 在溶剂和复合材料中的swcnt散发体长期以来一直被视为一个关键挑战。在这里,我们报告了含胺的芳香族和环己烷分子,这些分子是环氧固化的常见链扩展器(CES),可用于有效分散CNT。我们实现了CE溶剂中SWCNT的单管级分散,这是通过强性手性吸收和光致发光发射所证明的。SWCNT-CE分散体在环境条件下保持稳定数月。The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH − π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is con fi rmed by the negative Seebeck coe ffi cient of the CE-functionalized SWCNT fi lms, the red shift of the G band in the Raman spectra, and the NH X射线光电子光谱中的−π峰。CES的高配置显着改善了宏观CNT组件的电气和热传输。通过HNO 3的功能修改后,在80.8%的光透射率下,CE分散的SWCNT薄膜的板电阻达到161Ω平方-1。CES交联CNT和环氧分子,在CNT/环氧纳米复合材料中形成了声子传输的途径。基于CE的NH-π相互作用为SWCNT在方便而可扩展的过程中的有效和稳定分散提供了新的范式。与原始环氧树脂相比,CE -CNT-环氧复合材料的热导率增强了1850%,这是CNT/Epoxy纳米复合材料迄今据报道的最高增强。关键字:碳纳米管,分散,电荷转移,热界面材料,透明电极,功能化■简介
摘要 — 随着可变可再生能源在电力结构中的份额不断增加,需要新的解决方案来构建灵活可靠的电网。电池存储系统的能源套利通过转移需求和提高电力生产系统的整体利用率来支持可再生能源融入电网。在本文中,我们提出了一种用于日前市场能源套利的混合整数线性规划模型,该模型考虑了希望从其存储资产中获得额外收入来源的资产所有者的运营和可用性约束。该方法以最佳方式安排与最有利可图的交易策略相关的充电和放电操作,并使用包括德国、法国、意大利、丹麦和西班牙在内的多个欧洲国家的电价,在一年的时间范围内实现了最高可获得利润的 80% 至 90%。
随着芯片技术的发展,摩尔定律在微电子工业中的运用可能接近极限,三维集成电路(3D-IC)技术可以克服摩尔定律的限制,具有高集成度、高性能和低功耗的优势[1-3]。因此,3D IC中的芯片堆叠引起了电子工业的广泛关注,不同的键合技术被开发出来以保证芯片(或晶圆)的垂直堆叠,其中采用焊料的TLP键合已被提出作为实现低温键合和高温服务的有效方法。Talebanpour [4]采用Sn3.0Ag0.5Cu作为3D结构中的互连材料,经260 ℃回流温度和时效后获得了全IMC(Cu6Sn5/Cu3Sn)。储[5]研究了低温稳态瞬态液相(TLP)键合Cu/Sn/Cu和Ni/Sn/Ni焊点,分别检测到Cu 6 Sn 5 、Cu 3 Sn、Ni 3 Sn 4 、Ni 3 Sn 2 。陈[6]研究了基于TLP键合的Cu/Sn3.5Ag/Cu和Cu/Sn3.5Ag/Cu15Zn,焊点中检测到了Cu 6 Sn 5和Cu 6 (Sn, Zn) 5 ,研究发现Cu 6 Sn 5 由于其晶粒结构均一且脆性大,会降低键合可靠性;而Zn能有效地将均一晶粒结构修改为交错结构,从而提高键合可靠性。在3D IC结构中,完整IMC焊点在热循环载荷下的可靠性一直是重要的研究方向,有限元程序可以用来计算IMC焊点的应力-应变响应和疲劳寿命。田 [7] 研究了三维IMC接头的应力分析和结构优化
本研究使用线性近似近乎理想需求系统 (LAAIDS),利用 2018 年不同能源来源的横截面数据,分析了燃料使用模式是否遵循燃料堆叠假设以及影响沃利索镇家庭燃料使用的因素。模型的估计值受到新古典理论对需求的限制,并使用迭代看似不相关的回归 (ISUR) 估计模型。结果表明,家庭并没有完全转向消费新能源,正如能源阶梯假设所建议的那样,而是在燃料堆叠(能源结构)过程中实现能源消费多样化。此外,能源需求的支出弹性是支出弹性的。不仅如此,能源需求的交叉价格弹性表明研究区域存在能源替代和互补性。此外,我们确定了所有能源(煤油除外)的价格、家庭总能源支出、受教育年限、家庭规模和居住类型是能源支出份额的主要决定因素。我们建议让现代燃料更容易获得,影响家庭燃料使用的重要因素,与环境相关的规则和法规非常重要
1多功能磁光光谱技术中心(上海),纳米光学和高级工具工程研究中心(教育部),材料和电子科学学院材料系,东部中国师范大学,上海,200241年,200241年,200241年,200241 China 3 School of Computer Science and Technology, East China Normal University, Shanghai 200062, China 4 ASIC & System State Key Laboratory, School of Microelectronics, Fudan University, Shanghai 200433, China 5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China 6 Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433,中国
17:00-17:15 Application of Stacking stacking model in reservoir lithology identification Yu Ye 西南石油大学
图 2 LDMS 预浓缩/分离过程机理以及 LDMS-CE-TOF/MS 和 TQ/MS 的分析结果。 (a) 通过扫描和 AFMC 对样品溶液中的 DXd 进行预浓缩。 由于双堆积机制,DXd 被精确聚焦并与生物基质分离。 (b) 普通 CE-TQ/MS(未经任何预浓缩,1 μ M DXd)和 LDMS-CE-TQ/MS(1 nM)的提取离子电泳图;灵敏度提高了 1000 倍。 (c) 对与小鼠肝匀浆混合的 10 nM DXd 和 10 nM MMAE 进行 LDMS-CE-TOF/MS 分析。 DXd 和 MMAE 成功聚焦并与代谢物分离。 (d) LDMS-CE-TQ/MS 分析后的峰面积校准曲线。 R 2 超过 0.999,LOQ 为 420 fM(420 zmol,S/N = 10)。(e)2 pM DXd 与 100 pM DXd- d 5 和小鼠肝匀浆混合的 LDMS-CE-TQ/MS 分析。成功检测到 DXd,峰面积 RSD 为 7.1%,定量准确度为 110%。