物理学中最基本的概念之一是将系统分配到子系统中及其部分之间的相关性研究。在这封信中,我们在量子参考框架(QRF)协方差的上下文中探讨了这一概念,其中这种分区受对称约束的约束。我们证明,不同的参考框架观点会引起不同的子系统可观察的代数,这导致了子系统和纠缠的尺寸不变的框架依赖性概念。我们进一步证明,在对称约束施加对称性之前的下通勤的子代数可以在给定的QRF透视图中转化为对称性的代数。这样的QRF透视图不能继承子系统之间的区别,以相应的张量化性化为Hilbert空间和可观察的代数。由于发生这种情况的条件取决于QRF的选择,因此子系统局部性的概念取决于框架。
考虑到飞机的功能分解,很明显,由于飞机是一个复杂的系统,物理树的第一级不是单个项目,而是项目组,它们和谐地集成在一起以执行某些确定的功能。从术语的角度考虑严格的方法,这些项目组应标识为“子系统”。然而,实际上,飞机物理树的所有第一级构建块(在图 2 中表示为子系统)通常被定义为“系统”(例如,航空电子系统、燃油系统、起落架系统等),因为它们汇集了许多不同的设备。这种模糊性证实了复杂系统的系统视图的以下典型特征:系统概念可以应用于不同的层次。因此,飞机系统由“n”个“子系统”组成,而这些子系统又可以看作是由不同设备集成而成的“系统”。还可以进一步细分,以便将每个子系统划分为由各种设备组成的子系统,如图 3 所示。
• Aerojet 战术战斧 • 空中客车 A330/340 • 波音 Delta IV、AH-64、C-17、V-22、F-15、F-18E/F、737NG、747-400、767、777 • 庞巴迪挑战者 605、Q300 • 赛斯纳 CJ4 • 巴西航空工业公司 ERJ 135/145、飞鸿 100、飞鸿 300 • 通用电气 F110、F404、F414 • 湾流 G200、G350/450、G500/550、G650 • 韩华 T-50 • 洛克希德马丁 F-16、F-22、F-35 CTOL/STOVL、猎鹰、JASSM、RATTLRS、Polecat • 三菱重工 F-2 •诺斯罗普·格鲁曼 E-2C/D、X-47B • 轨道科学公司 GMD • 普惠 F119 • 雷神格里芬 • 雷神/洛克希德标枪 • 劳斯莱斯升力风扇 • 西科斯基 UH-60、SH-60、S-92
Aeroflex / Weinschel 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2 型号索引。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4-6 产品索引 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.6-8 快递和 Argosy 销售。。。。。。。。。。。。。。。。。。。。。。。。。.9-11 新产品 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.12-14 固定同轴衰减器。。。。。。。。。。。。。。。。。。。。。。.15-80 终端和负载。。。。。。....................81-132 可变衰减器(连续和步进) ........133-150 功率分配器和分配器 ....................151-164 移相器 ......................。。。。。。.165-170 直流模块 .。。。。。。。。。。。。。。。。.................171-176 同轴适配器 ............................... 177-184 平面盲配® 连接器 .................185-192 Planar Crown ® 连接器系统 ................193-198 可编程衰减器和衰减器/开关控制器 ..................199-260 子系统和配件 .....................261-282 美国销售代表 ........................283 全球销售代表 ...................284 订购信息 ................。。。。。。。。。.285 按字母顺序索引。。。。。。。。。。。。。。.............286-287 RoHs 合规性 ............。。。。。。。。。。。。。。。。。。。.287
考虑到飞机的功能分解,很明显,由于飞机是一个复杂的系统,物理树的第一级不是单个项目,而是项目组,它们和谐地集成在一起以执行某些确定的功能。从术语的角度考虑严格的方法,这些项目组应标识为“子系统”。然而,实际上,飞机物理树的所有第一级构建块(在图 2 中表示为子系统)通常被定义为“系统”(例如,航空电子系统、燃油系统、起落架系统等),因为它们汇集了许多不同的设备。这种模糊性证实了复杂系统的系统视图的以下典型特征:系统概念可以应用于不同的层次。因此,飞机系统由“n”个“子系统”组成,而这些子系统又可以看作是由不同设备集成而成的“系统”。还可以进一步细分,以便将每个子系统划分为由各种设备组成的子系统,如图 3 所示。
在某些特殊情况下,例如在黑洞附近或在统一加速的框架中,真空闪光似乎产生了有限的温度环境。目前没有实验性确认的这种效果可以解释为在未观察到的区域中追踪真空模式后,可以解释为量子纠缠的表现。在这项工作中,我们确定了一类实验可访问的量子系统,其中热密度矩阵从真空纠缠中出现。我们表明,在晶格上或连续体上,嵌入了D维间dirac fermion真空中嵌入的低维子系统的密度矩阵降低,相对于低维迪拉克汉密尔顿的较低维度。引人注目的是,我们表明真空纠缠甚至可以共同使在零温度下的间隙系统的子系统显示为热无间隙系统。我们在冷原子量子模拟器中提出了混凝土实验,以观察真空 - 键入诱导的热状态。
图 6-3a。用于验证 IRIG 时间码准确性的基于 PC 的测试设置。...................................... 6-12 图 7-1。单个 CAIS 总线配置。......................................................................... 7-2 图 7-2。分离 CAIS 总线配置。......................................................................... 7-2 图 7-3。配置检查流程图 (1/2)。............................................................. 7-4 图 7-4。配置检查流程图 (2 / 2)。......................................................... 7-5 图 B-1。热瞬态测试设备。............................................................................. B-2 图 B-2。底座。................................................................................................................ B-3 图 B-3。传感器固定装置支架。................................................................................ B-4 图 B-4。传感器固定装置(黄铜)。................................................................................ B-5 图 B-5。玻璃固定环。............................................................................................. B-6 图 B-6。传感器安装插头。............................................................................................. B-7 图 B-7。闪光灯滑块。............................................................................................. B-8 图 B-8。灯架(大)。......................................................................................... B-9 图 B-9。灯架(小)。.................................................................................... B-10 图 B-10。使用开槽旋转盘和相当于测量应用的热源对传感器进行瞬态热冲击测试的测试设置。.................... B-15 图 C-1。发射器 RF 包络。................................................................................. C-1 图 C-2。晶体探测器输出。.................................................................................... C-1 图 C-3。幅度调制。......................................................................................... C-2 图 D-1。测量值和计算值。...................................................................... D-2 图 E-1。GUI 控制窗口。......................................................................................... E-6 图 E-2。文件浏览器窗口。...................................................................................... E-6 图 E-3。对话框:载波跟踪滤波器。.................................................................... E-7 图 E-4。对话框:符号跟踪滤波器。.................................................................. E-8 图 E-5。外部/接收器/眼图。外部、离散时间散点图。................................................................ E-10 图 E-6。................................................................. E-10 图 E-7。循环同步进度。......................................................................... E-10 图 E-8。表格分析摘要。............................................................................. E-11 图 E-9。图形分析控制窗口。......................................................................... E-11 图 E-10。假锁定眼图。.................................................................................... E-13 图 E-11。假锁定星座。................................................................................. E-13 图 E-12。数据采集设备。................................................................................ E-16 图 F-1。分析仪结构。.............................................................................................. F-3 图 F-2。参考功率谱。......................................................................................... F-4 图 F-3。星座图。............................................................................................. F-5 图 F-4。检测滤波器。......................................................................................... F-6 图 F-5。发射机测试设备。.......................... F-13 图 F-7。................................................................................ F-6 图 F-6。参考信号的比特间隔载波相位轨迹。发射机性能摘要。................................................................ F-15 图 F-8。使用差分编码预测的检测性能。.......................... F-15 图 F-9。基带频谱。................................................................................ F-16 图 F-10。在发射机 RF 端口测量的 OQPSK 星座。................................. F-16 图 F-11。决策样本直方图。................................................................................ F-17 图 F-12。在发射机 RF 端口测量的 OQPSK 星座。................................. F-17 图 F-13。箱间隔相位轨迹。......................................................................... F-18 图 F-14。轨迹偏差频谱。.............................................................................. F-19
我们研究了 k -稳定器通用量子态的概念,即 n -量子比特量子态,这样就可以仅使用局部操作和经典通信在任何 k 量子比特上诱导任何稳定器状态。这些状态概括了 Bravyi 等人提出的 k -可配对状态的概念,可以从组合的角度使用图状态和 k -顶点小通用图进行研究。首先,我们证明了 k -稳定器通用图状态的存在,它们的大小在 n = Θ(k2) 量子比特时是最优的。我们还提供了参数,对于这些参数,Θ(k2) 量子比特上的随机图状态以高概率是 k -稳定器通用的。我们的第二个贡献包括在 n = O(k4) 量子比特上 k -稳定器通用图状态的两个明确构造。两者都依赖于有限域 F q 上射影平面的入射图。这比之前已知的 n = O(2 3 k) 的 k 可配对图状态的显式构造有了很大的改进,带来了一类新的、具有强大潜力的多部分量子资源。
摘要 使用 3D 打印的聚合物增材制造技术用于高频率毫米波(约100 至 300 GHz)应用正在兴起。在我们之前的工作(金属管矩形波导和自由空间准光学元件)的基础上,本文通过演示紧凑的多通道前端子系统,将两种介质在 G 波段(140 至 220 GHz)结合在一起。在这里,概念验证演示器集成了八种不同类型的 3D 打印组件(总共 30 个独立组件)。此外,两个测试平台和子系统的外壳都是 3D 打印的单件,以支持即插即用开发;提供轻松的组件组装和对齐。我们利用准光学测试平台引入了定制的自由空间 TRM 校准和测量方案。均等功率分配在我们的多通道应用中起着至关重要的作用。在这里,我们介绍了一种用于上毫米波应用的宽带 3-D 打印准光学分束器。我们对各个组件和完整集成子系统的定量和/或定性性能评估证明了在如此高的频率下使用消费级桌面 3-D 打印技术的潜力。这项工作为低成本、快速原型设计和完整毫米波前端子系统的小批量生产开辟了新的机会。
2 理论背景 6 2.1 量子计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 9 2.2.1 退相干和无退相干子空间 . ... . ... . ... . 9 2.2.2 子系统和无噪声子空间和系统 . ... . ... . 10 2.2.3 集体退相干 . ... . ... . ... . ... . ... . . . . 11 2.3 三量子比特 DFS 代码 . ... . ... . ... . ... . ... . ... . . . . 11 2.4 四量子比特无噪声子系统代码 . ... . ... . ... . ... . ... . . . . 13 2.5 Trotter 方程。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16