摘要:具有高相干性的热排放,尽管不如激光的热排放,但在许多实际应用中仍然起着至关重要的作用。在这项工作中,通过利用几何扰动诱导的光学晶格三倍和相关的光辉区折叠效果,我们提出并研究中红外的热排放,并同时具有高时空和空间连贯性。与我们先前工作中的倍增扰动的情况相反,引导模式分散带的陡峭部分将折叠到三元格式中的高对称性γ点。在这种情况下,特定的发射波长仅对应于非常小的波形范围。因此,除了以30 nm左右的实验带宽为特征的高时间相干性外,所达到的热排放还具有超高的空间相干性。计算表明,在中红外的热发射波长下,空间相干长度很容易达到MM尺度。关键字:三元光栅,光彩区折,准引导模式,中红外,连贯的热发射器
三元量子处理器具有与传统量子技术相比的显着计算优势,利用Qutrits(三级系统)中量子信息的编码和处理。要评估和比较此类新兴量子硬件的性能,必须具有适用于高维希尔伯特空间的强大基准测试方法。我们演示了行业标准随机基准测试(RB)协议的扩展,该协议广泛用于Qubits,适用于三元量子逻辑。使用超导五个QUTRIT处理器,我们发现单Qutrit门的限制性低至2。38×10-3。通过交织的RB,我们发现该QUTRIT门误差在很大程度上受到天然(值类)栅极限制的限制,并使用同时的RB来充分表征交叉词错误。最后,我们将循环基准测试应用于两Qutrit CSUM门,并获得0的两Qutrit过程限制。82。我们的结果展示了一种基于RB的工具,可以表征QUTRIT处理器的总体性能,以及一种诊断未来QUDIT硬件控制错误的通用方法。
摘要:本文报道了通过简便的水热法成功合成钴钌硫化物。使用 X 射线衍射、X 射线光电子能谱和拉曼光谱对所制备的钴钌硫化物的结构进行了表征。所有制备的材料均呈现纳米晶体形态。通过循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱技术研究了三元金属硫化物的电化学性能。值得注意的是,优化后的三元金属硫化物电极表现出良好的比电容,在 5 mV s -1 时为 95 F g -1,在 1 A g -1 时为 75 F g -1,优异的倍率性能(在 5 A g -1 时为 48 F g -1)和优异的循环稳定性(1000 次循环后电容保持率为 81%)。此外,该电极在功率密度为 600 和 3001.5 W kg -1 时的能量密度分别为 10.5 和 6.7 Wh kg -1。这些诱人的特性使所提出的电极在高性能储能装置中具有巨大的潜力。
摘要:使用可生物降解的纤维作为常规聚光纤维的替代品已成为对抗农业白人污染的重要技术。解决了基于PBAT的可生物降解膜的拉伸强度,水蒸气屏障特性和降解期的缺点,该研究旨在创建一个可以改善PBATFIM的多样性的复合纤维。为此,研究引入了PBAT/PLA-PPC-PTLA三元混合系统。该系统将PBAT与PLA和PPC有效融合,这是通过电子显微镜测试证明的,表现出在混合纤维的表面和横截面上没有明显的缺陷。与纯PBAT可生物降解纤维相比,开发的三元混合系统的拉伸强度提高了58.62%,水蒸气屏障特性增强了70.33%,功能时期的扩展为30天。玉米作物的现场实验表明,经过改进的可生物降解膜更适合农业生产,因为它改善了热绝缘和湿度的保留,导致玉米产量增加了5.45%,接近传统的聚油管的产量。
Chilwee CC系列锂离子电池组设计的是基于MNNICO三元技术,具有出色的周期性能和高安全性。CC系列主要应用于电动自行车,三轮车和其他电动汽车。电池模块由系列中的软包装电池组成,包括电池保护模块,以确保最高可靠性。
动机:合理建模药物、靶标和疾病之间的关系对于药物重新定位至关重要。虽然在研究二元关系方面取得了重大进展,但仍需要进一步研究以加深我们对三元关系的理解。图神经网络在药物重新定位中的应用正在增加,但需要进一步研究以确定适合三元关系的建模方法以及如何捕捉其复杂的多特征结构。结果:本研究的目的是建立药物、靶标和疾病之间的关系。为了表示这些实体之间的复杂关系,我们使用了异构图结构。此外,我们提出了一种 DTD-GNN 模型,该模型结合了图卷积网络和图注意网络来学习特征表示和关联信息,从而有助于更彻底地探索这些关系。实验结果表明,DTD-GNN 模型在 AUC、准确率和 F1 分数方面优于其他图神经网络模型。该研究对于全面认识药物与疾病之间的关系,以及进一步研究和应用药物与疾病相互作用的机制具有重要意义。该研究揭示了这些关系,为医学创新治疗策略提供了可能性。
fecocu三元纳米颗粒在Fecocu / c金属碳纳米复合物的碳基质中分布和稳定,已使用由控制的IR热解的前体进行了合成,该前体的聚合物 /乙酰乙酸铁酯 /钴酸铁和铜乙酸乙酸的型号由关节溶液构造的型号均可替换为“乙酰乙酸盐 /钴乙酸酯 /碳酸酯”。已经研究了合成温度对纳米姿势的结构,组成和电磁特性的影响。表明,由于Fe3γ与COCU固体溶液的纳米颗粒的相互作用,发生了Fecocu三元纳米颗粒的形成。合成温度的升高会导致金属纳米颗粒的大小增加,这是由于基质重建而导致的,它们的团聚和聚结。此外,具有可变成分的三元合金纳米颗粒可能会根据合成温度和金属的含量比形成。拉曼光谱表明,纳米复合材料的碳基质的结晶度随着合成温度而增加。已经研究了3-13 GHz的纳米复合材料的相对介电常数和渗透率的频率响应。已经表明,金属的含量比变化显着增加了介电和磁损耗。以前的损失是由纳米复合碳基质形成复杂的纳米结构引起的,而后者则来自纳米颗粒的大小的增加以及自然铁磁共振频率向低频区域的变化。反射损失已经使用标准方法从有关相对介电常数和渗透率的频率响应的实验数据中计算出来。已经表明,电磁波的频率范围和吸收(从–20到–52 dB)可以通过改变前体中金属的含量比来控制。与在相似条件下合成的FECO/C纳米复合材料相比,实验获得的纳米复合材料提供了更好的结果。
图。S1。 相对于(a)100 GPa和(b)200 GPA在内的元素和二进制化合物的三组分李x s y h z的稳定性包括ZPE。 (考虑到在200 GPA时有和没有ZPE的稳定三元结构没有变化,我们只选择了最接近凸壳的十个亚稳态化学计量比以在100 GPA时用ZPE计算稳定性。))。S1。相对于(a)100 GPa和(b)200 GPA在内的元素和二进制化合物的三组分李x s y h z的稳定性包括ZPE。(考虑到在200 GPA时有和没有ZPE的稳定三元结构没有变化,我们只选择了最接近凸壳的十个亚稳态化学计量比以在100 GPA时用ZPE计算稳定性。)
摘要。本文介绍了一种可综合的 µ 架构设计方法,通过在处理器流水线内的执行阶段利用规范有符号数字 (CSD) 表示来提高给定 RISC-V 处理器架构的性能。CSD 是一种独特的三进制数系统,无论字长 N 是多少,都可以在常数时间 O (1) 内实现无进位/无借位加法/减法。CSD 扩展以 Potato 处理器为例进行了演示,这是一种简单的 RISC-V FPGA 实现。但是,该方法原则上也可以应用于其他实现。我们通过 CSD 实现的性能提升需要二进制和 CSD 表示之间的转换开销。该开销通过扩展到七级流水线架构来补偿,该架构具有三步执行阶段,可提高吞吐量和工作频率并实现循环展开,这在具有连续计算的应用中尤其有利,例如信号处理。根据实验结果,我们将基于 CSD 的三元解决方案与原始实现进行了比较,后者使用通常的纯二进制数表示操作数。与 FPGA 上的原始 RISC-V 处理器相比,我们的方法实现了 2.41 倍的运行频率提升,其中超过 20% 的增益归功于 CSD 编码。对于计算密集型基准测试应用程序,这种增强使吞吐量提高了 2.40 倍,执行时间缩短了 2.37 倍。