非洲猪发烧(ASF)是由Asfiviru属的DNA病毒引起的野猪和家养猪(SUS SCROFA)的可传播致命感染(家族Asfarviridae; Gabriel等人; Gabriel等人。2011)。研究表明,在欧洲,传统的传输路线涉及Ornithodoros属的血液滴答tick虫在ASF感染周期中不起作用(Pietschmann等人。2016)。相反,动物是通过与其他受感染动物或受污染的尸体,食物或设备直接接触而感染的(Gaudreault等人。2020)。尽管对人们无害,但该病毒可能会产生重大的经济影响。尽管进行了持续研究2019,Gaudreault等。2020)将控制措施限制在感染的早期发现,健康与患者的身体分离以及对感染动物的淘汰(欧洲食品安全局,2014年,Jurado等人2018)。
我们介绍了Biotrove,这是旨在推进生物多样性应用程序的最大公共访问数据集。Biotrove从Intaturist平台策划,并审查仅包括研究级数据,包含16190万张图像,提供了三个主要王国的前所未有的规模和多样性:Animalia(“动物”),真菌(“ Fungi”),“ Fungi”)和parterae(“植物”),跨越了大约366.6k种。每个图像都用科学名称,分类层次结构和通用名称注释,可提供丰富的元数据,以支持各种物种和生态系统跨越准确的AI模型开发。我们通过释放一套使用4000万个字幕图像的子集(称为Biotrove-Train)训练的剪辑模型来证明Biotrove的价值。This subset focuses on seven categories within the dataset that are underrepresented in standard image recognition models, selected for their critical role in biodiversity and agriculture: Aves ("birds"), Arachnida ("spiders/ticks/mites"), Insecta ("insects"), Plantae ("plants"), Fungi ("fungi"), Mollusca ("snails"), and Reptilia (“蛇/蜥蜴”)。为了支持严格的评估,我们介绍了几个新的基准测试和报告模型的准确性,以跨生活阶段,稀有物种,混杂物种和多种分类学水平进行零拍学习。我们预计生物群将刺激AI模型的开发,这些模型支持用于害虫控制,作物监测,生物多样性评估和环境保护的数字工具。这些进步是确保粮食安全,保存生态系统并减轻气候变化影响的范围。Biotrove公开可用,易于访问,并准备立即使用。
非洲猪瘟 (ASF) 是一种高度传染性的病毒性出血性疾病,由一种大型、有包膜、双链 DNA 病毒引起,该病毒属于 Asfarviridae 科和 Asfivirus 属。ASF 病毒 (ASFV) 感染猪科动物,包括家猪、野猪和欧亚野猪。非洲野猪(如疣猪和非洲猪)是宿主,但不会表现出疾病迹象。ASF 病毒引起的感染可能是超急性、急性、亚急性或慢性的。极少数情况下,从感染中恢复的猪会成为持续感染的病毒携带者。Ornithodoros 属的软蜱是该病毒的天然节肢动物宿主。人畜共患的可能性可以忽略不计;没有证据表明 ASF 病毒会影响人类。这种疾病已成功从许多养猪量大的发达国家中消除,但在非洲却很流行。在没有 ASF 的国家爆发疫情可能会对生产者造成严重影响,因为猪死亡率高、猪肉和猪肉产品出口减少以及控制和根除该疾病的成本高昂。目前,尚无获批的疫苗或治疗方法。
大多数人类是昼行性的,这意味着他们通常白天醒着,晚上睡觉。然而,许多其他动物并非如此,它们喜欢夜生活,全天休息。那么大脑如何决定我们是夜行性还是昼行性呢?许多生理过程,如清醒或睡眠,都与白天和黑夜的时间同步。这些活动由称为昼夜节律钟的分子振荡器调节,它由基因转录和蛋白质翻译的正反馈和负反馈回路组成,使过程以〜24 小时的周期发生。就像管弦乐队中的乐器一样,这些遍布全身的时钟发出的“滴答声”必须协调一致,以协调不同器官的活动。对于哺乳动物来说,这首交响曲的指挥是“主昼夜节律时钟”,它位于视交叉上核 (SCN),这是大脑下丘脑区域内约 20,000 个神经元组成的一个集群。SCN 中的每个神经元都会根据昼夜循环调整其电活动,最终产生身体遵循的节律输入(Reppert 和 Weaver,2002 年)。
危险风险分析 4.1 特殊现场条件或关注点 4.2 活动危险分析 4.2.1 “活动危险分析”表 4.3 人身安全 4.3.1 处理桶和容器 4.3.2 电气危险 4.3.2。公用设施 4.3.2.2 地下公用设施 4.3.3 挖掘和沟渠 4.3.4 火灾和爆炸 4.3.5 热应激 4.3.6 冷应激 4.3.7 噪音 4.3.8 滑倒、绊倒和坠落 4.3.9 手动起重 4.3.10 抛射物体和头顶危险 4.3.11 割伤和撕裂伤 4.3.12 使用梯子 4.4 化学危害 4.4.1 有机蒸气暴露评估 4.4.2 皮肤接触和吸收评估 4.5 生物危害 4.5.1 有毒植物 4.5.2 蜱虫 4.5.2.1 莱姆病 4.5.2.2 落基山斑疹热 4.5.2.3 预防4.5.3 蚊媒疾病 - 西尼罗河病毒 4.5.4 黄蜂和蜜蜂 4.5.5 日晒 4.5.6 监督、CAMP、热点去除、脱水
莱姆毛毛虫病是北半球最常见的载体传播疾病,是由螺旋体伯氏伯氏菌SL引起的,该疾病是由ixodes tick传播的。疫苗接种将是预防莱姆病的有效方法。目前没有人类疫苗。疫苗可防止伯氏伯氏菌感染感染,可以通过两种方式起作用:杀死病原体以阻止感染或靶向载体以防止成功传播。因此,研究着重于源自病原体,B。burgdorferisl或载体的保护性抗原,ixodes tick(1)。专注于伯氏菌的可能的保护性抗原时,人类疫苗研究中最有希望的候选者是外表面蛋白。尤其是OSPA,主要由Borrelia在未用壁虱中表达的OSPA已被广泛研究,并且是退出的人Lymerix™疫苗的主要组成部分(2-6)。在从壁虱到宿主的传播过程中,伯氏螺旋体下调了OSPA并上调外表面蛋白C,这对于促进迁移到滴答唾液腺,并且在哺乳动物宿主的螺旋体感染中起作用。OSPC也被证明是有效的疫苗靶标,但在不同的B. burgdorferi sl物种和菌株之间具有很高的异质性(7,8)。在针对壁虱向量的替代方法中,tick唾液可以发挥关键作用。tick唾液中包含几种蛋白质,通过使用抗炎,抗凝蛋白和免疫抑制能力,可促进tick传播病原体的传播和存活(9,10)。dai等。Borrelia burgdorferi Sl利用tick唾液腺蛋白来促进其从tick到宿主的传播,反之亦然,以增加其在tick中的生存机会(11,12)。例如,OSPC与ixodes capularis唾液蛋白salp15结合,该蛋白质Salp15可保护螺旋体免受抗体介导的杀伤的侵害(12-14)。此外,SALP15在抑制CD4 + T细胞和树突状细胞活化方面还具有免疫抑制特性(15,16)。有趣的是,针对SALP15的疫苗已显示出部分阻断B. burgdorferi Ss感染(14,17)。还表征了tick组胺的释放因子,这是tick唾液中的,对于滴答喂食很重要(18)。当RNA干扰沉默时,他们显示出对小鼠的滴答物的显着受损。在THRF免疫小鼠中也显着减少了B. burgdorferi Ss的滴答喂养和传播(18)。Schuijt等。识别tick虫唾液凝集素途径抑制剂(TSLPI),一种肩cap骨唾液蛋白,该蛋白质被证明会损害补体介导的爆发爆发芽孢杆菌。B. Burgdorferi传输是
摘要 尽管蜱虫能够获得和传播多种致病病原体,但对蜱虫的研究却落后于蚊子等其他节肢动物媒介,这主要是因为在应用现有的遗传和分子工具方面存在挑战。CRISPR-Cas9 正在改变非模式生物研究;然而,尚未有蜱虫成功进行基因编辑的报道。注射蜱虫胚胎进行基因编辑的技术挑战进一步减缓了研究进展。目前,尚无针对任何螯合动物物种(包括蜱虫)的胚胎注射方案。在此,我们报告了一种针对黑腿蜱(Ixodes scapularis)的成功胚胎注射方案,以及使用此方案通过 CRISPR-Cas9 进行基因组编辑。我们还证明 ReMOT 控制技术可成功用于在昆虫纲之外产生基因组突变。我们的研究结果为蜱研究界提供了创新工具,对于促进我们对蜱虫传播病原体的分子机制以及宿主-媒介-病原体相互作用的潜在生物学的理解至关重要。
可遗传的免疫是通过将免疫直接嵌入传播人类病原体的野生物种的基因组中来控制传染病的一种有希望的方法。在这里,我们报告了Mus Musculus的基因工程,以产生一种中和保护性的单链抗体,以抗莱姆病的病原体Borrelia Burgdorferi。工程小鼠稳定地产生了多代LA-2 SCFV-α-α融合蛋白,表现出强大的遗传力和基因表达的稳定性。在感染和未感染的tick虫下进行顺序挑战后,杂合小鼠对感染表现出强烈的抵抗力,有效地中断了Borrelia burgdorferi疾病传播周期。最近建立了新颖的方案,以基因设计白脚小鼠,莱索普斯(Peromyscus leucopus)是莱姆病的关键储层,这些发现表明,可行性免疫是缓解环境中莱姆病的潜在策略的可行性。更广泛地,工程化的储层免疫力可以提供一种可概括的方法来控制媒介传播和人畜共患病,具有改善人类健康的巨大潜力。
气候变化会加剧现有的健康威胁或通过各种途径构成新的公共卫生挑战。疾病的起源和进化取决于由疾病剂,宿主和环境组成的流行病学三合会。气候变化可能会证明这三个方面中的每一个。这些是众所周知的,可以改变疾病药物的分布,患病率和特征(甚至种类),从广义上讲,“药物”一词包括感染性和非感染性因果关系。气候也已知会影响宿主因子,即活生物体的内部特征使它们更容易受到健康状况的影响。变化不仅发生在人类的领域,而且在动物健康的领域发生。人畜共患病的增加再次使人类更容易出现更多的疾病问题,因为动物和人类感染通常是可变的。环境平衡的破坏通常会通过改变感染的工具,使人类更接近疾病药物,并改变疾病媒介的生存,分布和再现(媒介蚊子,蝇,蝇,fe,tick,)。
Parinaud 眼腺综合征 (POGS) 通常很少见,通常表现为单侧眼部炎症,伴有同侧淋巴结肿大。POGS 是由 Bartonella henselae (BH) 引起的猫抓病 (CSD) 的非典型表现。POGS 的诊断具有挑战性,因为它很罕见,并且潜在病因多种多样,包括跳蚤、蜱虫和各种微生物的感染。本病例系列详细介绍了三例归因于 POGS 的 CSD 病例,强调了在缺乏黄金标准诊断方法(即 BH 的聚合酶链反应 (PCR) DNA 检测)的情况下面临的诊断挑战。这些病例涵盖了一系列表现,包括肉芽肿性炎症和淋巴结肿大,可通过抗生素和非药物干预措施(例如家猫的跳蚤控制和猫受伤后的卫生措施)得到有效治疗。这些病例强调了临床上提高警惕的必要性,尤其是对有猫接触史的患者,并呼吁进一步研究改进诊断标准,以便更准确、更实用地检测 CSD,尤其是非典型表现。这在无法进行更具侵入性的病变活检或 BH 的黄金标准 PCR DNA 检测的地区尤其有益,因此在多系统受累的情况下可以立即采取准确的治疗措施。