摘要背景:背迷走神经复合体神经元内的 TRH/TRH-R1 受体信号通路是脑肠轴的重要介质。心理健康和对各种神经病变(如自闭症、注意力缺陷多动障碍、阿尔茨海默病和帕金森病、重度抑郁症、偏头痛和癫痫)的预防都受到肠道微生物群的影响,并由迷走神经介导。抗生素利福昔明 (RF) 不会穿过肠血屏障。它改变了肠道微生物群的组成,从而对旅行者腹泻、肝性脑病和前列腺炎具有治疗作用。 TRH 和 TRH 样肽的结构为 pGlu-X-Pro-NH 2 ,其中“X”可以是任何氨基酸残基,具有增强生殖、限制热量、抗衰老、胰腺 β 细胞、心血管和神经保护作用。TRH 和 TRH 样肽不仅存在于整个中枢神经系统,还存在于外周组织中。为了阐明 TRH 样肽在脑-肠-生殖系统相互作用中的作用,将 16 只雄性 Sprague–Dawley 大鼠(203 ± 6 克)分成 4 组(n = 4/组):对照组(CON)继续随意进食 Purina 啮齿动物饲料和水 10 天直至断头;急性组(AC)连续 24 小时接受 150 毫克 RF/kg 粉状啮齿动物饲料,为 200 克大鼠提供 150 毫克 RF/kg 体重;慢性组(CHR)动物接受 RF 10 天;戒断组(WD)大鼠接受 RF 8 天,然后接受正常饲料 2 天。结果:响应 RF,整个大脑和外周组织中的 TRH 和 TRH 样肽水平发生显著变化。 RF 治疗导致脑内 TRH 和 TRH 样肽水平发生显著变化的部位数量,按降序排列为:延髓 (16)、梨状皮质 (8)、伏隔核 (7)、额叶皮质 (5)、纹状体 (3)、杏仁核 (3)、内嗅皮质 (3)、前扣带回 (2) 和后扣带回 (2)、海马 (1)、下丘脑 (0) 和小脑 (0)。外周组织相应的排序为:前列腺 (6)、肾上腺 (4)、胰腺 (3)、肝脏 (2)、睾丸 (1)、心脏 (0)。结论:TRH 和 TRH 样肽表达对 RF 治疗的敏感性,特别是在延髓和前列腺中,与这些肽参与 RF 的治疗作用一致。关键词:TRH、利福昔明、延髓、皮质、前列腺、肾上腺
细胞培养系统已用于研究遗传分析,激素调节,细胞因子分泌,病毒滴定和药物敏感性,以代替活动物,因为培养的细胞模仿了实验中的整个生物体。因此,将来将增加细胞培养系统的有用性。特别是,在细胞毒性化合物的assray中,不需要动物的系统非常出色。是从大鼠,小鼠和人类等乳腺组织中建立了大量细胞系,因为它们已在实验室中被用于实验室。此外,精确地研究了许多生化反应。最近,不仅从科学的角度,而且还从社会观察者那里讨论了环境激素(内部灌木丛)或二恶英对生物体的影响。要评估这些影响,还应检查其他动物,因为它们直接暴露于环境污染物。因此,鱼是研究这些综合对生物体影响的最好动物之一(Babich和Borenfreund,1987)。此外,许多来自g,鳍,性腺,睾丸,肾脏等的鱼类细胞系。(Wolf and Mann,1980;
在活组织中,细胞在周围微环境中复杂的信号后表达其功能。在微观和宏观上捕获层次结构,以及各向异性细胞模式仍然是生物打印的主要挑战,以及用于创建生理上与生理相关的模型的瓶颈。解决此限制时,引入了一种新技术,称为嵌入式挤出 - 量化印刷(EMVP),融合的挤出生物构图和无层,超快速的体积生物打印,从而使空间模式多种墨水类型。轻响应性微凝胶是第一次以生物素(μ树脂)为基于光的体积生物打印的生物素(μ树脂),从而为细胞寄养和自组织提供了微孔环境。调整基于明胶的微粒的机械和光学特性,可以用作悬挂挤出打印的支撑浴,其中包含高细胞密度的功能可以轻松引入。μ树脂可以在几秒钟内将层析成像灯投影雕刻成厘米尺度,基于颗粒水凝胶的综合构建体。间质微伏增强了多个茎/祖细胞(血管,间充质,神经)的差异,否则常规的散装水凝胶不可能。作为概念验证,EMVP被应用于创建复杂的合成生物学启发的细胞间通信模型,其中脂肪细胞的分化受到光遗传学工程胰腺细胞的调节。总体而言,EMVP为生产具有生物功能的再生移植物以及开发工程生活系统和(代谢)疾病模型的新途径。
摘要:具有与人体组织相对应的物质特性的现实,高保真的解剖模型可用于外科计划和培训,医学教育和医疗设备测试和验证。解剖模型的常规制造是一个耗时且昂贵的过程,尽管如此,它仍无法完全模仿人体在几何和机械性能方面的复杂性。以快速且具有成本效益的方式创建更接近现实的模型,添加剂制造,尤其是材料喷射的过程,可以是一种解决方案。利用此过程,可以制造具有复杂几何形状,高分辨率甚至材料特性梯度的多色多色对象。要复制生物组织的机械性能,必须将它们与可用于利用制造工艺的技术材料或材料组合匹配。因此,作者建议根据标准化测试程序(如凹痕测试的拉伸和ISO 48-4)进行测量,用于凹痕测试,这允许与制造材料匹配,因此将导致可能创建更准确的人体复制品,从而提供现实的具有现实的具有逼真的具有逼真的作用反馈。
真菌内生菌在热带森林动力学中起着关键作用,通过生长刺激,疾病抑制,胁迫耐受性和营养动员而影响植物的影响。这项研究研究了热带植物中内生菌社区的区域,叶片发育阶段和组织类型的影响。年轻和成熟的叶子是从47种荒谬的物种中收集的,来自23种的sapwood,哥斯达黎加的高果实和瓜纳卡斯特的旧生长森林。真菌多样性和组成是通过对ITS2 nrDNA区域的质量编码进行评估的。最识别的ASV距离门comycota。diver命令是botryosphaeriales和glomerellales sig-nifimpy促进了内生构造的贡献,而无需检测到宿主特异性群落。我们观察到了各个地区的物种丰富度的显着差异,并通过β多样性确定了明显的组成。在成熟的叶组织和幼体叶组织之间没有发现统计学上的显着变化。相比之下,叶子比Sapwood表现出更丰富,更多样化的组合。随着植物在时间和空间中经历了不同的环境,我们的结果可能会因通过个体发育而改变结构和化学性质的影响。鉴于这些真菌对农业和森林生态系统的潜在影响,持续的研究对于辨别宿主,内生物和其他生态机制在明显的定殖模式中的作用至关重要。
胰岛素抵抗会损害餐后葡萄糖通过4型葡萄糖转运蛋白(GLUT4)的吸收,并且是前2型糖尿病的primary缺陷。我们以前在肌肉,脂肪和神经元亚群中以人Glut4启动子驱动的胰岛素受体基因敲除(GIRKO)的形式发电了一种耐胰岛素的小鼠模型。然而,在正常食物饮食(NCD)6个月之前,Girko小鼠的糖尿病率保持较低,这表明其他因素/机制是导致不良代谢作用促进明显糖尿病的最终进展的不良代谢作用。在这项研究中,我们表征了成年吉科小鼠的代谢性疾病,急性切换为高脂饮食(HFD)喂养,以确定疾病进展所需的其他代谢挑战。与其他饮食诱导的肥胖症(DIO)和遗传模型不同(例如,DB/DB小鼠),Girko小鼠在HFD喂养方面保持倾斜,但发展了胰岛素抵抗综合征的其他基本特征。girko小鼠尽管增加了高血糖。此外,Girko小鼠的口服葡萄糖耐受性也受损,而Exendin-4的降低葡萄糖降低有限,这表明钝化的肠染色蛋白作用有助于高血糖。其次,由于HE-Patic脂质分泌,血清甘油三酸酯浓度和脂质液滴在肝细胞中累积,Girko小鼠在HFD上造成了严重的血脂异常。总而言之,我们的研究鉴定出有助于糖尿病进展的重要基因/饮食中的重要基因/饮食中,这些基因/饮食可能会利用这些糖尿病进展,从而发展出更有效的疗法。第三,HFD上的Girko小鼠在肠道中增加了炎症提示,这与HFD诱导的微生物组和血清脂多糖(LPS)有关。
细胞培养系统已用于研究遗传分析,激素调节,细胞因子分泌,病毒滴定和药物敏感性,以代替活动物,因为培养的细胞模仿了实验中的整个生物体。因此,将来将增加细胞培养系统的有用性。特别是,在细胞毒性化合物的assray中,不需要动物的系统非常出色。是从大鼠,小鼠和人类等乳腺组织中建立了大量细胞系,因为它们已在实验室中被用于实验室。此外,精确地研究了许多生化反应。最近,不仅从科学的角度,而且还从社会观察者那里讨论了环境激素(内部灌木丛)或二恶英对生物体的影响。要评估这些影响,还应检查其他动物,因为它们直接暴露于环境污染物。因此,鱼是研究这些综合对生物体影响的最好动物之一(Babich和Borenfreund,1987)。此外,许多来自g,鳍,性腺,睾丸,肾脏等的鱼类细胞系。(Wolf and Mann,1980;
图 2 LDMS 预浓缩/分离过程机理以及 LDMS-CE-TOF/MS 和 TQ/MS 的分析结果。 (a) 通过扫描和 AFMC 对样品溶液中的 DXd 进行预浓缩。 由于双堆积机制,DXd 被精确聚焦并与生物基质分离。 (b) 普通 CE-TQ/MS(未经任何预浓缩,1 μ M DXd)和 LDMS-CE-TQ/MS(1 nM)的提取离子电泳图;灵敏度提高了 1000 倍。 (c) 对与小鼠肝匀浆混合的 10 nM DXd 和 10 nM MMAE 进行 LDMS-CE-TOF/MS 分析。 DXd 和 MMAE 成功聚焦并与代谢物分离。 (d) LDMS-CE-TQ/MS 分析后的峰面积校准曲线。 R 2 超过 0.999,LOQ 为 420 fM(420 zmol,S/N = 10)。(e)2 pM DXd 与 100 pM DXd- d 5 和小鼠肝匀浆混合的 LDMS-CE-TQ/MS 分析。成功检测到 DXd,峰面积 RSD 为 7.1%,定量准确度为 110%。
在可编程 DNA 热循环仪 (Perkin Elmer Cetus) 中进行 1000 个循环。每个循环中,反应混合物加热至 93 °C 持续 0.5 分钟,冷却至 55 °C 持续 1 分钟,然后在 72 °C 下孵育 2 min。在最后一个循环中,72 °C 孵育时间延长至 7 分钟。
抽象的单细胞RNA测序(SCRNA-SEQ)正在彻底改变对复杂和动态细胞机制的研究。然而,细胞类型的注释仍然是一个主要挑战,因为它主要依赖于先验知识和手动策展,这是繁琐且主观的。越来越多的SCRNA-SEQ数据集以及众多已发表的遗传研究激励了我们建立全面的人类细胞类型参考地图集。在这里,我们介绍了解码细胞类型特异性(DECS),这是一种自动细胞类型注释方法增强了人类细胞类型表达pro纤维和标记基因的全面集合。我们使用DECS来注释来自各种组织类型的SCRNA-SEQ数据,并系统地评估了在不同条件下的注释精度,包括参考面板,测序深度和特征选择策略。我们的结果表明,扩展参考对于提高注释准确性至关重要。与许多现有的最新注释工具相比,分数显着减少了计算时间和提高准确性。DEC可以集成到标准的SCRNA-SEQ分析管道中,以增强细胞类型的注释。最后,我们证明了DECS的广泛效用