Buruli溃疡(BU)疾病是由分枝杆菌引起的被忽视的坏死性皮肤感染,是仅次于结核病和麻风病的第三种最常见的分枝杆菌疾病。感染主要发生在中非和西非的偏远,农村地区,也出现在澳大利亚,日本和巴布亚新几内亚。目前尚无针对Buruli溃疡疾病的疫苗,并且以前使用密切相关的细菌和亚基蛋白的所有尝试仅在部分成功。在这里,我们在小鼠中测试了一种复合亚基配方,该配方掺入了溃疡性分枝杆菌毒素霉菌乳元作为免疫调节剂,以及抗原AG85A和Polyketide Sythase酶酶A(KRA),用Quil-A辅助(KRA)形成。burulivac诱导了AG85A和KRA抗原特异性抗体,T细胞以及混合促疾病和抗炎的细胞因子反应,在14周的观察期间,在小鼠FOOTPAD模型中赋予了针对Buruli ulcer病的绝对保护。这两个都优于活体细菌疫苗,即BCG和缺乏霉菌性毒素(MUδ)的无毒的溃疡菌株。白介素10与保护密切相关。我们建议Burulivac是一名有前途的疫苗候选者,以抵抗Buruli溃疡疾病,需要进一步探索。
摘要Buruli溃疡(BU)是与皮肤相关的热带疾病之一(皮肤NTDS)之一,是由卵巢菌属甲虫的皮下感染引起的坏死和残疾皮肤疾病。从世界卫生组织(WHO)于1998年建立了全球BU计划,据报道,已有32多个国家(大部分来自西非和澳大利亚)的BU案件> 67,000例。目前正在从利福平加链霉素(注射)到全口径方案的过渡期,但它不能希望消除这种机会性的环境病原体。M. ulcerans在遗传上与相关的致病生物非常相似。然而,M。ulcerans携带独特的巨质质剂PMUM001,编码负责产生脂质的外毒素毒素毒力因子菌根霉素的生物合成机械。这种扩散的化合物导致BU的致病性病因与其他分枝杆菌感染的显着差异。因此,霉菌酮是细胞毒性和免疫抑制作用,并在感染皮肤中引起血管功能障碍。在我们对BU发病机理的理解方面的一个重大进步已经达成了霉菌酮在宿主细胞中的作用机理的一致性,该机制在分泌和膜蛋白生物发生的重大步骤中针对SEC61转运。尽管所有分枝杆菌的疫苗开发都充满了挑战,但Mycolactone Pro Duction可能在BU疫苗的开发中提出了一个特殊的挑战。已知实时销售疫苗BCG仅提供人类的部分和短暂性保护,但在鼠标临床前提供方便的基线
C. Condusum C. Coyleae C. Diphtheria C. falsenii C. Flavescens C. Freiburgense C. Freneyi C. Genitalium C. Glucuronolotilticmicum C.谷氨酰胺C. Hansenii C. Hansenii C. Imitans C. imitans C. jeikeium C. kroppenstiiii c. kroppenstedtiii c. c. lipoplien c. lipoplienc Uchotii C. Minute C. mucifaciens C. Mycetoides C. Pilbarense C. Pseudodiphthericum C. Pseudogenital C. Pseudogenital C. PseudogenieniTris C. pyruviciproducens C. Resistant C. Riegelii C. segmentosum C. Simulating C. singular C. station C. striped C. Suicordis C. Sundsvallense C. tuzsenii C. Timonense C. Tuscaniense C.溃疡C.尿素C.尿素尿素C.变量C. viterumeruminis C.疾病 div>
摘要:分枝杆菌属包括许多已知在人类中引起严重疾病的物种,包括结核分枝杆菌和Leprae M. Leprae,分别是结核病和麻风病的负责人。此外,全世界在全世界的感染次数中也有一个混合物种,例如雄性大麻菌,脓肿杆菌和乌塞兰大分枝杆菌,统称为无结核分枝杆菌(NTMS)。预计情况会恶化,因为像结核病一样,NTMS自然具有或正在对常规抗生素产生高抗性。因此,实施和开发模型很重要,使我们能够有效地检查NTM毒力的基本问题,并将其应用于发现新的和改进的疗法。本文献综述将重点介绍NTM中耐药性背后的已知分子机制以及可用于测试新有效抗菌疗法的当前模型。
分枝杆菌属包括导致人类和动物结核病 (TB) 的结核分枝杆菌复合群 (MTBC) 的种、导致麻风病的麻风分枝杆菌,以及通常称为非典型或非结核分枝杆菌 (NTM) 的分枝杆菌种,其中包括导致布鲁里溃疡的溃疡分枝杆菌。与 MTBC 组成员不同,NTM 不是人类的专性寄生虫,而是土壤和水的正常居民,可以在天然水源和处理过的水源中找到 [1]。已正式确认的 NTM 有 200 多种 [2],其中已知约 25 种与人类疾病密切相关。一些种与引起类似 TB 症状的肺部疾病有关 [1]。由于它们的栖息地,人类每天都会接触到这些细菌。因此,必须将 NTM 病与简单的定植或临床样本污染(例如自来水)区分开来 [1,3]。与结核病不同,NTM 引起的疾病的全球流行病学尚不明确。从临床标本中分离 NTM 的病例主要见于工业化国家,患病率和发病率各不相同。基于肺部标本分离株的研究报告称,2004 年至 2006 年美国的患病率为每 100,000 人 1.4 至 6.6 人 [ 4 ],2010 年加拿大安大略省的患病率为每 100,000 人 9.8 人 [ 5 ],2020 年德国的患病率为每 100,000 人 5.8 人 [ 6 ]。也有报告称,2012 年英格兰的发病率为每 100,000 人 6.1 人 [ 7 ],2020 年德国的发病率为每 100,000 人 5.3 人 [ 6 ]。在结核病流行国家,NTM 的报告频率较低,并且主要发生在高危人群中,特别是具有易感条件或免疫力低下的人群 [ 8 ]。然而,工业化国家的经验表明,结核病负担的下降也增加了发现的 NTM 病例数。随着另一种环境下结核病防治规划的加强,我们或许也会看到类似的情况,对中低收入国家而言,诊断和临床治疗的挑战将日益加大[9]。NTM 肺病的诊断基于临床、放射学和微生物学标准[1]。在大多数资源有限的国家,基本上无法进行以实验室为基础的 NTM 检测,无法与 MTBC 相区分并确定其菌种。显微镜检查是最容易获得的技术,它将 MTBC 和 NTM 识别为抗酸杆菌 (AFB),但无法区分它们。自 2010 年以来,世界卫生组织 (WHO) 已推荐使用 GeneXpert MTB/RIF(Xpert)等快速分子检测作为结核病诊断的初始检测,该检测具有更高的灵敏度和特异性 [10]。该检测仅可识别样本中是否存在 MTBC 菌种。如果 AFB 阳性痰液样本经 Xpert 检测呈 MTBC 阴性,则可能提示感染 NTM [11]。在马里,已报道过 NTM 感染病例,特别是在抗结核治疗失败或结核病治愈后复发的患者中 [ 12 ]。在该国引入 Xpert 后,AFB 涂片阳性而 Xpert 检测阴性的疑似 NTM 感染病例报告更频繁 [ 13 ]。
Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>Acinetobacter Baumannii, Staphylococcus capnocytophaga Haemolytica, Pseudomonas fluorescens, Staphylococcus horses, Actinomyces Israelii, Staphylococcus Epidermidis, Capnocytophaga Ochracea, Pseudomonas Mosselii, Streptobacillus moniliformis, Bordetella tunnels,葡萄球菌血液溶血,囊孢子虫,pseudomonas putida,链球菌,Gallolyticus,Burkholderia cepacia,葡萄球菌,弯曲球菌,弯曲球菌Ococcus沙门氏菌肠道SSP。 div>