摘要 印度尼西亚在英语教学中越来越多地使用人工智能工具,但其实施和影响尚未完全了解。本研究探讨了印度尼西亚英语作为外语 (EFL) 教师如何将人工智能 (AI) 技术融入教学,他们对这些工具的有效性的看法以及他们面临的障碍。通过半结构化访谈采用定性方法采访了印度尼西亚的五名英语作为外语 (EFL) 教师。数据分析表明,教育工作者使用 Grammarly、Google Translate、ChatGPT 和 Claude AI 等人工智能工具来提供反馈、帮助理解和创建内容。这些工具被认为有利于提高学生的写作能力和热情,尽管有人担心过度依赖、学术诚信以及阻碍批判性思维和真正学习的可能性。障碍包括对工具、技术设置和学生准备程度的限制。该研究强调了在英语教学中使用人工智能工具的优势,并强调了公平和评价性地纳入它们的重要性。教师应鼓励建构主义教学技术来激发认知参与和数字能力,确保人工智能资源补充而不是替代真正的学习。建议未来研究道德和教育影响。关键词:人工智能、英语作为外语 (EFL)、语言教育、教育技术、印度尼西亚、定性研究、教师看法、挑战、道德考虑。如何引用 Rahman, MA (2024)。探索人工智能在印度尼西亚英语作为外语教育中的整合。教学法:英语语言教学杂志,12 (2)。196-212 DOI:10.32332/joelt.v12i2.9549。期刊主页 https://e-journal.metrouniv.ac.id/index.php/pedagogy 这是一篇根据 CC BY SA 许可开放获取的文章 https://creativecommons.org/licenses/by-sa/4.0/
本文报道了通过相场模拟解决材料科学悬而未决的问题的最新突破。它们涉及增材制造中的凝固结构形成、贝氏体转变过程中的碳重新分布以及高温合金高温蠕变过程中的损伤开始。第一个例子涉及凝固过程中外延生长和成核之间的平衡。第二个例子涉及贝氏体转变中扩散控制和块状转变占主导地位的争议。第三个例子涉及高温合金中的定向粗化(筏化),这是一种扩散控制的相变:沉淀物相干性的丧失标志着与晶格旋转和拓扑反转相关的损伤的开始。本文根据需要回顾了相场法的技术细节,并讨论了该方法的局限性。
非人类人道主义:当人工智能的善举变成坏事时 Mirca Madianou 伦敦大学金史密斯学院 2018 年,有超过 1.68 亿人需要人道主义援助,同时有超过 6900 万人成为难民,人道主义部门面临着重大挑战。人工智能 (AI) 应用可以成为人道主义危机的潜在解决方案的提议受到了热烈欢迎。这是“人工智能用于社会公益”大趋势的一部分,也是“数字人道主义”更广泛发展的一部分,“数字人道主义”指的是公共和私营部门为应对人道主义紧急情况而使用数字创新和数据。聊天机器人、声称可以预测未来流行病或人口流动的预测分析和建模以及依赖于采用机器学习算法的先进神经网络的生物识别技术,都是在援助行动中越来越受欢迎的例子。本文建立了一个跨学科框架,将殖民和非殖民理论、人道主义和发展的批判性探究、批判性算法研究以及对人工智能的社会技术理解结合在一起。人道主义在这里被理解为一种复杂的现象:不仅仅是通常定义的“减少痛苦的必要性”(Calhoun,2008),而且是一种行业、一种话语和一种源于 19 世纪和 20 世纪殖民主义的历史现象(Fassin,2012;Lester & Dussart,2014)。人工智能同样是一个多面现象:不仅仅是基于先进计算和机器学习算法的技术创新,而且是一个行业以及关于技术的特定话语。人工智能只能与数据和算法一起理解——这三者是不可分割的,因为人工智能依赖于机器学习算法,而机器学习算法是特定数据集的产物。鉴于“大数据”本质上是不完整的,且具有本体论和认识论的局限性(Crawford & Finn,2014),人工智能应用会重现并可能放大大型数据集中发现的现有偏见(Benjamin,2019;Eubanks,2018;Noble,2018 等)。
低速设施中风洞流质量测量和评估的现代框架 随着测试的复杂性增加,对风洞测试测量精度的要求也越来越严格。在风洞测试时间减少和测试成本增加的环境下,重要的是在较长时间内建立、维护和统计控制风洞设施中测量链所有组件的精确校准和验证。本文介绍了在贝尔格莱德军事技术学院的 T-35 4.4 m × 3.2 m 低速风洞中建立和维护测量质量控制系统所做的努力。该设施测量质量的保证基于确保三个主要组成部分的质量:风洞测试部分的校准、所用仪器的校准以及标准风洞模型的定期测试。介绍了相关风洞校准测试的样本结果,并将其与其他设施的结果进行了比较。测试证实了该设施的整体质量良好,并且必须保持、定期检查和系统地记录所达到的质量水平。关键词:风洞流动质量;低速风洞;标准校准模型;AGARD-B;ONERA M4。1.简介 风洞测试是任何飞机设计和开发的重要组成部分。预测未来飞行物体的空气动力学行为和特性的通常做法是进行相对小规模模型的风洞测试。为了确保对风洞数据进行有意义的解释,必须了解和纠正影响结果的影响因素;修正后的数据应与来自不同风洞或自由空气情况的数据具有可比性,[1]-[9]。此外,最好采用或多或少标准的校准和测试程序,以使来自不同风洞的数据尽可能接近可比性。在测试模型的风洞结果可用于预测未来飞行物体的气动特性之前,必须确定模型支撑系统和非均匀气流条件的影响随着风洞试验对测量精度的要求越来越严格,试验的复杂性也随之增加,并且在风洞试验时间减少、试验成本不断上升的环境下,重要的是对风洞设施中测量链的所有组件进行准确的校准和验证,更重要的是,在较长时间内保持和统计控制 [10]。