在战略竞争和日益严峻的地缘政治挑战中,焦点将集中在美国、欧盟和志同道合的国家以及中国和俄罗斯,这两个国家既是创新先驱,也是地缘政治参与者。国防、技术和政治领域的专家讨论了人工智能对全球安全战略、网络战和国际稳定的影响:人工智能如何影响国家间的力量平衡?人工智能的军事应用会带来哪些风险?国际合作能否减轻人工智能带来的安全威胁?人工智能对西方军队有什么好处?研究机构在全球军事应用人工智能方面发挥了什么作用?
摘要 - 基于激光技术的免费空间光学(FSO)通信是下一代超高数据速率链接从卫星到地面和反之亦然的有前途的机会。为了调查并证明空间对地面激光链路的可行性,我们在慕尼黑大学的研究中心空间(UNIBW M)进行了一个小型卫星任务。此任务的核心是非对位轨道(NGSO)中的卫星雅典娜1。除其他有效载荷外,该卫星配备了光学激光终端,用于高速数据向上和下行链路。地面段将在德国Neubiberg的Unibw M校园内组成一个光学地面站(OGS)。在本文中,我们提供了计划的FSO通信实验的概述,尤其是介绍和描述OGS的设置。OGS目前正在建设中,计划全面运营能力为2023年底。索引术语 - 激光通讯,光学地面站,自由空间光学通信,小型卫星任务
摘要 由于太空创新技术的使用,近年来太空服务的重要性显著增加。在开发新方法和新技术时,必须在真实操作条件下直接在太空中测试功能性和稳健性。然而,这在今天仍然是一个困难,因为研究人员和开发人员如果不花费大量的时间和成本就无法实现这种在轨演示的能力。慕尼黑联邦武装部队大学 (UniBw M) 在各个研究中心针对太空旅行和太空服务的各种相关主题开展创新开发和研究工作。作为对地面实验室已开展的研究工作的补充,我们引入了在轨演示和测试计划,作为迈向敏捷研究和开发过程的下一步。作为该计划的核心,UniBw M 正在开展一项名为空间互联网无缝无线接入网络 (SeRANIS) 的技术演示项目。 SeRANIS 的目标是通过在低地球轨道上的小型卫星 ATHENE-1 进行大量创新实验,提供快速部署的多功能太空任务。 ATHENE-1 计划于 2025 年发射升空。 SeRANIS 为研究人员提供了一个科学环境,以便共同研究、评估、开发、验证和展示太空和地面的新方法和技术。科学领域包括空间通信,包括宽带通信和物联网、无线电科学、基于人工智能的自主性、全球导航卫星系统技术、光学和红外地球观测以及物体识别算法。此外,还将展示卫星运行的新概念、现代结构、监测系统状态的创新技术以及太空电力推进。本出版物介绍了 SeRANIS 项目。介绍了项目框架、进度安排、项目现状以及卫星平台的选择。此外,还对此次任务的科学研究领域、任务架构、基本设计和轨道选择进行了说明。
Thomas Pany 教授就职于慕尼黑联邦国防军大学 (UniBw M) 的空间系统研究中心 (FZ SPACE),负责领导空间技术与空间应用研究所 (ISTA) 的卫星导航单元 LRT 9.2。他教授的导航课程侧重于 GNSS、传感器融合和航空航天应用。在 LRT 9.2 中,有十几名全职研究人员研究 GNSS 系统和信号设计、GNSS 收发器和高完整性多传感器导航(惯性、激光雷达),并且还在开发模块化无人机 GNSS 测试平台。ISTA 还开发了 MuSNAT GNSS 软件接收器,最近专注于智能手机定位和 GNSS/5G 集成。他拥有格拉茨技术大学 (sub auspiciis) 的博士学位,并在 GNSS 行业工作了七年。他撰写了约 200 篇出版物,其中包括一本专著,并获得了美国导航研究所颁发的五项最佳演讲奖。Thomas Pany 还组织了慕尼黑卫星
Thomas Pany 教授就职于慕尼黑联邦国防军大学 (UniBw M) 空间系统研究中心 (FZ-Space),负责领导空间技术与空间应用研究所 (ISTA) 的卫星导航单元 LRT 9.2。他教授的导航课程侧重于 GNSS、传感器融合和航空航天应用。在 LRT 9.2 中,有十几名全职研究人员研究 GNSS 系统和信号设计、GNSS 收发器和高完整性多传感器导航(惯性、激光雷达),并且还在开发基于 UAV 的模块化 GNSS 测试平台。ISTA 还开发了 MuSNAT GNSS 软件接收器,最近专注于智能手机定位和 GNSS/5G 集成。他拥有格拉茨技术大学 (sub auspiciis) 的博士学位,并在 GNSS 行业工作了七年。他撰写了大约 200 篇出版物,其中包括一本专著,并获得了美国导航研究所颁发的五项最佳演讲奖。托马斯·帕尼 (Thomas Pany) 还组织了慕尼黑卫星导航峰会。
ARAIM 小组的起源和目标 2004 年签署的美国-欧盟 GPS-伽利略合作协议为美国和欧盟在卫星导航领域的合作活动确立了原则。该协议预见到一个工作组来促进在下一代民用卫星导航和授时系统的设计和开发方面的合作。这项工作成为工作组 C (WG-C) 的重点。WG-C 的目标之一是开发用于生命安全服务的 GPS-伽利略综合应用程序。为此,WG-C 于 2010 年 7 月 1 日成立了 ARAIM 技术小组 (ARAIM SG)。ARAIM SG 的目标是在双边基础上研究 ARAIM(高级接收机自主完整性监测)。进一步的目标是确定 ARAIM 是否可以成为支持全球空中导航的多星座概念的基础。具体来说,ARAIM 应该支持航路和终端区飞行;它还应支持进近操作期间的横向和垂直引导。在这些目标中,全球航空垂直引导是最雄心勃勃的目标。这些飞机操作称为定位器精密垂直或 LPV。LPV-200 表示这种引导应支持低至 200 英尺高度的进近操作,ARAIM SG 专注于支持全球 LPV-200 的 ARAIM 架构。该文件是三阶段工作中的第一个里程碑报告。它提供:ARAIM 概述、第 1 阶段的成就和后续步骤。该报告由来自美国联邦航空管理局 (FAA)、斯坦福大学 (SU)、MITRE 公司、伊利诺伊理工学院 (IIT)、德国航空航天中心 (DLR)、慕尼黑联邦航空学院 (UniBW)、欧洲空间局 (ESA) 和欧盟委员会 (EC) 的 ARAIM SG 成员编写。ARAIM 概述如上所述,ARAIM 必须确保航路飞行、终端和进近操作的导航完整性。对于后者,它必须在几秒钟内检测到底层全球导航卫星系统 (GNSS) 中的所有危险故障。用空中导航的语言来说,ARAIM 必须确保在导航传感器误差大于一定量(目前 LPV-200 为 35 米)之前,在出现任何危险误导信息 (HMI) 的六秒内警告飞行员。报告第 2 节确定了其他辅助条件。ARAIM 旨在支持空中导航数十年。因此,ARAIM 必须具有灵活性,以便空中导航不会对底层全球导航卫星系统(例如 GPS、伽利略、GLONASS、北斗/指南针等)的健康状况产生脆弱的依赖。因此,ARAIM 必须允许飞行员使用新的卫星和星座。它必须自动补偿这些新卫星和星座的故障率。对于新卫星和星座,这些故障率预计会很高
本报告的目标: 2004 年签署的美国-欧盟 GPS-伽利略合作协议为美国和欧盟在卫星导航领域的合作活动确立了原则。该协议预见到一个工作组来促进在下一代民用卫星导航和授时系统的设计和开发方面的合作。这项工作成为工作组 C (WG-C) 的重点。WG-C 的目标之一是开发基于 GPS-伽利略的生命安全服务应用。为此,WG-C 于 2010 年 7 月 1 日成立了 ARAIM 技术小组 (ARAIM TSG)。ARAIM TSG 的目标是在双边基础上研究 ARAIM(高级接收机自主完整性监控)。进一步的目标是确定 ARAIM 是否可以成为支持全球空中导航的多星座概念的基础。具体而言,ARAIM 应支持航路和终端区飞行;它还应支持机场进近操作期间的横向和垂直引导。在这些操作中,航空的全球进近引导是最雄心勃勃的目标。这些飞机操作被称为水平导航的定位器精度 (LP) 和垂直导航的定位器精度垂直 (LPV)。LPV-200 表示,这种引导应支持低至接地点以上 200 英尺高度的决策高度 (DA) 的进近操作。ARAIM TSG 重点关注