了解在极端条件下电解质混合物的局限性是确保可靠和安全的电池性能的关键。在高级表征方法中,飞行时间中子成像(TOF-NI)是独一无二的,其能力可以绘制金属套管和电池组内含H的含H的物理化学变化。该技术需要在脉冲来源中长时间暴露,这限制了其应用,特别是在低温下进行分析。为了克服这些局限性,我们在连续来源使用高占空比ni,证明了由于整体分子扩散的变化而导致电解质的物理和化学变化的能力。这项工作中描述的策略减少了所需的接触,并提供了研究电解质混合物的热稳定性的基线,从对最先进的电解质混合物的证明到电池的性能。此分析和方法适用于较广泛的应用范围以外的氢材料。
抽象的片上光电探测器是光学通信中必不可少的组件,因为它们将光转换为电信号。光压计是光电探测器的类型,它通过在光吸收时由电子温度波动引起的电阻变化起作用。它们被广泛用于从紫外线到mir的宽波长范围,并且可以在宽大的材料平台上运行。在这项工作中,我引入了一种新型的波导集成剂量计,该重点在标准材料平台上从NIR到MIR以透明的导电氧化物(TCO)作为活性材料运行。此材料平台可以使用相同的材料同时构建调制器和光电探测器,该材料完全兼容CMO,并易于与被动芯片组件集成。此处提出的光压计由放置在肋光子波导内部的薄质TCO层组成,以增强光吸收,然后将TCO中的电子加热至高于1000 K的温度。电子温度的升高导致电子迁移率降低电子迁移率和导致的电阻变化。因此,只需几乎没有光学输入功率的微量流量,就可以达到超过10 A/W的响应率。计算表明,通过较低的TCO掺杂,可以预期进一步改进,从而在片上光电探测器中打开新的门。
使用光吸收纳米颗粒将光能转化为热量是生物医学光热治疗的基本基础。除了生物相容性和靶向感兴趣的组织的能力外,作为光热剂的纳米颗粒的规格还包括在近红外范围内具有强的摩尔吸收系数(生物组织的第一个光学窗口),对吸收能量的热转化为热量,并有效地转移到环境环境中。最后两个规格合并为名为“光到热转化效率”(LHCE)的度量,这是专用于光热治疗1,2的药物的主要定量 - 标准之一。因此,一种可靠的方法来确定光热纳米剂的LHCE是有意义地比较定量不同类型的纳米颗粒的方法。值得注意的是,LHCE可能会随光激发的波长和LHCE的多波长测定而变化,可以指导用于治疗应用的激光的选择。
通过便携式仪器持续监测心血管疾病的早期诊断对心脏呼吸信号的持续监测,人们对光杀解物学(PPG)的兴趣越来越越来越大。In this context, it is conceivable that PPG sensors working at different wavelengths simultaneously can optimize the identi fi cation of apneas and the quanti fi cation of the associated heart-rate changes or other parameters that depend on the PPG shape (e.g., systematic vascular resistance and pressure), when evaluating the severity of breathing disorders during sleep and in general for health monitoring.因此,这项工作的目的是提出一种新型的脉搏血氧仪,该脉冲血氧仪在传输模式下提供了与三个光波长(绿色,红色和红外线)相关的同步数据记录,以优化心率测量以及对氧饱和度的可靠且连续评估。传输模式在运动伪影中被认为比反射模式更健壮,但是由于该波长在该波长处的身体组织吸光度很高,因此电流脉搏血氧仪无法在传输模式下采用绿光。出于这个原因,我们的设备基于单光雪崩二极管(SPAD),其死亡时间很短(少于1 ns),同时具有单个光子灵敏度和高计率,允许在同一站点和传输模式下获取所有利率的所有利率。先前的研究表明,SPAD摄像机可用于通过远程PPG测量心率,但是到目前为止,从未解决过基于接触SPAD的PPG传感器通过接触SPAD的PPG传感器进行的氧饱和度和心率测量。对六名健康志愿者进行初步验证的结果反映了预期的生理现象,从而在小于70 ms的间隔间隔估计中提供了RMS误差(带有绿光),氧气饱和度的最大误差小于1%的氧气饱和度小于1%。我们的原型展示了基于SPAD的设备的可靠性,用于连续长期监测心脏响应变量,以替代光电二极管的替代方案,尤其是在需要最小的面积和光学功率时。
使用微聚焦 MeV 质子束 (micro-PIXE) 的质子诱导 X 射线发射是一种强大的分析工具,可用于定量分析样品中微量和痕量元素的空间分布,分辨率可达微米。位于卢布尔雅那的 Jo ˇ zef Stefan 研究所 (JSI) 微分析中心的离子探针光束线 1 通常用于执行 micro-PIXE 映射。由于其出色的功能(例如对冷冻水合组织进行 micro-PIXE 分析 2),它吸引了广泛的用户群,尤其是来自生物学和医学领域的用户 3 – 5 我们的微探针分析的最大总表面积限制为 ∼ 1 mm 2 。后者,再加上对真空样品环境的需求,带来了一些重要的实验限制。因此,我们最近升级了我们的外部光束线,现在可以与微探针光束线互补使用,以中等横向分辨率(几十毫米)对较大的物体进行空中微 PIXE 分析。6
由亚波长大小的金属或介电纳米结构二维排列组成的光学超表面可用于操纵亚波长厚度层的光特性。1–4 光学超表面被认为是完美的 5 和选择性 5,6 吸收器和透镜。7 光学超表面的可能应用包括与 CMOS 图像传感器结合用作滤波器 8 或用作生物传感器的构建块。9,10 相比之下,很少有人尝试将超表面直接整合到光电器件中,并利用其波长选择性和偏振选择性等特性。金属超表面已与体光电探测器相结合,用于光电流增强和传感。11,12 介电超表面已被构造到体 Si 和 Ge 光电二极管的顶层,以增强宽带响应度。13
被动超材料是从波浪共振机理中受益的人造或自然结构。在声学中,它们已被广泛用于实现所需的波浪现象,例如声波衰减,[1-4]扩散,[5-9]单向传输,[10-12],例如声学二极管,[13]可折线二极管,[13]可直接fractive-fractive-fractive-fractive-fractive-fractive-ractive-Index介质,[14]拓扑任务,[21-24]等。其中,空气中的声音的吸收[25-32]代表了最重要的应用之一。与传统的被动声处理相比,超材料可以显着提高处理低频声波的效率,并使亚波长宽带吸收成为可能。在这种类型的元用户的设计过程中,应精确控制所采用的超材料的分散性能。在被动设计策略中,已经进行了广泛研究的单极或偶极类型的耦合分辨率(例如,请参见[25,26,33],[34]第3章,[34]第5章,[35]等第5章等)。在一维(1D)反射问题(具有刚性边界[36-38]或软边界[39])中,可以使用单个谐振器以给定的频率实现。[40,43]请注意,通过使用相同类型的两个谐振器,应适当选择它们在波动方向上的距离以产生其他类型的共振。[40,44]另外,可以考虑退化的谐振器[26,40],这是通过在波传播沿同一位置引入单极和偶极共振来实现的。在相反的情况下,在1D传输问题中,单极或偶极型谐振器可以实现的最大吸收系数为αmax= 1/2 [25,40–42];为了产生完美的吸收,至少需要两个耦合的谐振器,因为两种类型的共振都需要相同频率以同时抑制反射和传输。使用退化的谐振器通常会以更加困难的设计过程的价格实现空间紧凑的设计,以使其完美地吸收,因为Evanes-Cont耦合通常很重要。请注意,前面提到的策略是基于产生的镜像对称性
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
化学交联能够快速识别 RNA-蛋白质和 RNA-核酸分子间和分子内相互作用。然而,目前尚无方法能够位点特异性和共价交联 RNA 内两个用户定义的位点。在这里,我们开发了 RNA-CLAMP,它能够位点特异性和酶促交联(夹紧)RNA 内两个选定的鸟嘌呤残基。分子内夹紧会破坏正常的 RNA 功能,而随后对交联剂进行光裂解会恢复活性。我们使用 RNA-CLAMP 通过光裂解交联剂夹紧 CRISPR-Cas9 基因编辑系统的单向导 RNA (sgRNA) 内的两个茎环,完全抑制编辑。可见光照射会裂解交联剂并以高时空分辨率恢复基因编辑。设计两种对不同波长的光有响应的光裂解接头,可以在哺乳动物细胞中实现基因编辑的多路复用光激活。这种光激活的 CRISPR-Cas9 基因编辑平台受益于无法检测的背景活动,提供激活波长的选择,并具有多路复用功能。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 4 月 6 日发布。;https://doi.org/10.1101/2022.04.05.486971 doi:bioRxiv preprint