表 2.1:水表坐标示例 ...................................................................................................... 10 表 2.2:标准详图表(详见附录 A) ...................................................................................... 16 表 2.3:最小管壁厚度 ...................................................................................................... 23 表 2.4:带法兰接头的球墨铸铁管最小壁厚 ...................................................................... 23 表 3.1:重力卫生下水道明细表示例 ...................................................................................... 39 表 3.2:重力卫生下水道短管位置示例 ...................................................................................... 39 表 3.3:每根主直径的最小临时地役权宽度 ............................................................................. 41 表 3.4:来自特定场地来源的卫生流量贡献 ............................................................................. 43 表 3.5:重力卫生下水道最小坡度 ............................................................................................. 45 表 3.6:适用于内落管直径的检修孔尺寸........................................................... 55 表 4.1:泵站提交文件结构 ...................................................................................... 76 表 4.2:来自特定场地来源的卫生流量贡献 ........................................................................ 80 表 4.3:基于土地利用的卫生流量贡献 ............................................................................. 81 表 4.4:示例 I/O 列表 ...................................................................................................... 143 表 5.1:小溪穿越设计指南 ............................................................................................. 159 表 6.1:可接受的约束接头 ............................................................................................. 174 表 6.2:铁路或高速公路下的最小套管尺寸 ............................................................................. 175
*1. B OPN 、B OPS :动作点 B OPN 及 B OPS 是增加(将磁铁靠近)磁铁 (N 极或 S 极) 施加于本 IC 的磁通密度后,输出电压 (V OUT ) 发生变化时的磁通密度值。 即使磁通密度超过 B OPN 或 B OPS ,V OUT 仍会保持该状态。 *2. B RPN 、B RPS :解除点 B RPN 及 B RPS 是减少(将磁铁远离)磁铁 (N 极或 S 极) 施加于本 IC 的磁通密度后,输出电压 (V OUT ) 发生变化时的磁通密度值。 即使磁通密度低于 B RPN 或 B RPS ,V OUT 仍会保持该状态。 *3. B HYSN 、B HYSS :滞后宽度 B HYSN 及 B HYSS 分别是 B OPN 与 B RPN 、B OPS 与 B RPS 之差。备注 磁密度单位mT可以用公式1 mT = 10高斯进行换算。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
摘要。最近提出的量子系统使用频率复用量子比特技术来读取电子器件,而不是模拟电路,以提高系统的成本效益。为了恢复单个通道以供进一步处理,这些系统需要一种解复用或通道化方法,该方法可以低延迟处理高数据速率,并且使用很少的硬件资源。本文介绍了一种使用多相滤波器组 (PFB) 信号处理算法的低延迟、适应性强的基于 FPGA 的通道器。由于只需设计一个原型低通滤波器来处理所有通道,因此 PFB 可以轻松适应不同的要求,并进一步简化滤波器设计。由于每个通道都重复使用相同的滤波器,与传统的数字下变频方法相比,它们还降低了硬件资源利用率。实现的系统架构具有广泛的通用性,允许用户从不同数量的通道、采样位宽度和吞吐量规格中进行选择。对于使用 28 系数转置滤波器和 4 个输出通道的测试设置,所提出的架构可产生 12.8 Gb/s 的吞吐量和 7 个时钟周期的延迟。
摘要 极低地球轨道 (VLEO) 已被提议作为一种有益的太空任务模式,因为它们倾向于提高仪器的空间分辨率并降低单位质量的发射成本。然而,对于目视仪器来说,这些好处是以仪器扫描宽度减小为代价的。这种减少导致地球上某些区域的重访时间更长,实现全球覆盖的时间也更长。相反,光检测和测距 (激光雷达) 作为一种主动遥感技术,由于信噪比的提高,可以从较低海拔的较大扫描宽度中受益。对这种关系的研究表明,激光雷达扫描宽度与海拔的平方成反比,因此,提供所需激光雷达覆盖所需的航天器数量也与海拔的平方成反比。对合适推进系统的研究表明,尽管推进剂质量和维持轨道所需的推进器数量随着海拔的降低而增加,但由于所需航天器数量较少,整个系统的质量以及发射成本通常会随着海拔的降低而降低。对于给定的任务、航天器平台和推进系统,可以确定一个 VLEO 高度,从而实现最低的总任务成本。
相对于建筑物、硬表面、不透水表面面积(现有的和拟议的)和绿地的百分比。计算中不包括街道通行权面积。11. 所有交通区域(停车场、车道、车道围裙、装卸区、消防通道等)的详细信息和横截面积。12. 单独列出的现有建筑物和拟议扩建建筑的总面积、可用建筑面积和当前用途。对于停车计算,可用建筑面积将确定为用于特定用途的面积。(例如:商品销售、客户服务、制造或仓库)停车计算需要现有和未来的员工人数。13. 当毗邻或在项目内时,任何现有或拟议的通行权都需要用准确的街道名称/位置/尺寸来标识,以包括现有和拟议的设施,如街道、路缘、人行道、项目车道和对面街道临街的车道。 14. 现有和拟建车道和停车场的交通方面,包括:显示交通流向的箭头;堆叠(免下车通过)、停车位大小(最小 162 平方英尺)和布局;无障碍停车位和坡道;装卸区;车道宽度以及车道裙板与公共街道之间的半径或喇叭口。
意识到诸如RBSR之类的双重分子的磁相结合已经证明了迄今为止的难以捉摸的目标,尽管已经取得了长足的进步。14,15,28–31由于SR和其他二价原子的单线特征,不存在Bialkali系统期望的通常的自旋 - 旋转耦合,并且Feshbach共振非常狭窄。32–34实际上,RBSR系统的最有前途的共振位于1313 g(用于Bose-Bose 87 RB + 84 SR系统)和519 G(用于87 RB + 87 SR BOSE-FERMI混合物),具有1.7和1.7和16 mg的宽度。 15因此,需要对施加磁场的PPM级控制。此外,初始激光冷却阶段需要在接近零和四极磁场之间切换,因此需要避免永久磁铁和其他磁性材料。总的来说,磁场所需的控制水平和可重复性构成了严重的实验挑战。先前报道的方案稳定了实验室中的Feshbach线圈电流或环境磁场,但并非两者兼而有之。例如,先前证明了用于平均至子PPM精度的原子物理学的低噪声驱动因素。35,36
摘要 - 出现的加密系统,例如完全型号的加密(FHE)和零知识证明(ZKP)是计算和数据密集型的。fhe和ZKP在软件和硬件中的影响很大程度上依赖于von Neumann架构,在数据移动上损失了大量的能量。有希望的计算范式正在内存(CIM)中进行计算,该计算使计算能够直接发生在内存中,从而减少数据运动和能耗。但是,有效地执行大整数乘法(在FHE和ZKP中至关重要)是一个开放的问题,因为现有的CIM方法仅限于小型操作数尺寸。在这项工作中,我们通过探索用于大整数乘法的高级算法方法来解决这个问题,并将Karatsuba算法确定为CIM应用程序最有效的方法。此后,我们设计了第一个用于电阻CIM横杆的Karatsuba乘数。我们的乘数使用三阶段管道来增强吞吐量,此外,还可以平衡内存耐力与有效的数组大小。与现有的CIM乘法方法相比,当比例扩展到ZKP和FHE所需的位宽度时,我们的设计在吞吐量中最多可实现916倍,而面积时间产品的改进则达到281倍。索引术语 - 在内存中计算,大整数乘以,karatuba乘法
随着光刻技术在缩小微电子设备方面的能力不断提高,对改进的光刻胶材料的需求也日益迫切,尤其是对于极紫外 (EUV) 光刻胶。在这项工作中,我们研究了一种称为“alucone”的 Al 基混合薄膜光刻胶的分子层沉积 (MLD),这扩展了我们之前对 Hf 基混合薄膜“hafnicone”作为 EUV 光刻胶进行测试的研究。Alucone 在 100 ºC 下使用金属前体三甲基铝和有机前体乙二醇生长。与 hafnicone 一样,alucone 表现为负性光刻胶,可以分辨 50 纳米线宽,但初步数据表明 alucone 的线条图案比 hafnicone 的线条图案更清晰。使用 3 M HCl 作为显影剂时,铪酮的灵敏度为 400 μC/cm 2,而 alucone 的灵敏度则不太好(使用 0.125 M HCl 时为 4800 μC/cm 2)。我们对 alucone 的研究为 MLD 薄膜的结构特征提供了新的见解,从而可以实现所需的 EUV 响应行为。这一见解可能会加速用于电子束和 EUV 光刻的气相沉积无机光刻胶的开发。关键词:光刻胶、薄膜、极紫外 (EUV) 光刻、分子层沉积 (MLD)、原子层沉积 (ALD)、有机-无机混合材料
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。