摘要 —P300 拼写器是脑机接口研究中广泛使用的应用。事实证明,P300 拼写器可以作为神经反馈训练工具,通过逐渐增加拼写任务的难度来增强注意力。这种自适应方法使用户更难正确拼写单词,鼓励他们提高注意力以抵消日益增加的难度。因此,自适应 P300 拼写器有可能成为患有 ADHD 的儿童、患有痴呆症的老年患者的治疗选择,并成为健康成年人的认知增强工具。但是,训练长度(包括设置时间)需要很快,以确保用户接受。本研究调查了使用和不使用 xDAWN 空间滤波器时不同电极子集对 P300 拼写器性能的影响。结果表明,xDAWN 空间滤波器可以提高许多电极的性能,但会降低少于八个电极的结果。对于近乎完美的性能至关重要且有许多电极可用的场景,建议使用一组带有 xDAWN 空间滤波器的 16 个电极。对于需要考虑成本和设置时间,且可以接受较低性能的情况,使用不带空间滤波器的六个电极就足够了。
摘要 面部认知在社交互动中起着重要作用。研究面部认知机制的典型刺激是快速连续视觉呈现 (RSVP)。在 RSVP 任务中,当一个人识别目标图像时,会引发称为事件相关电位 (ERP) 的大脑反应。需要多次试验才能平均并获得干净的 ERP,以解释 ERP 反应背后的认知机制。然而,增加试验次数会导致疲劳并影响诱发的 ERP 幅度。本文采用了不同的视角;机器学习可能会提取有意义的认知结果,揭示面部认知机制,而无需直接关注 ERP 的特性。我们实施了 xDAWN 协方差矩阵方法来提高数据质量,并实施了支持向量机分类模型,以使用部分面部认知任务中诱发的 ERP 成分来预测参与者感兴趣的事件。我们还研究了面部成分和身体反应的影响,以探索每个成分的作用并找到减少实验期间疲劳的可能性。我们发现眼睛是最有效的成分。无论是在行为反应还是分类表现方面,完整面部和部分可见眼睛的面部都获得了类似的统计结果。从这些结果来看,眼睛成分可能是面部认知中最重要的。因此,完整面部和部分可见眼睛的面部认知机制可能存在一些相似之处,应利用 ERP 特征进一步研究。
大脑计算机界面是人类计算机交互的一种新方法,它提供了大脑与计算机或其他外部设备之间的直接通信联系(McFarland和Wolpaw,2011年)。事件相关电位(ERP)是代表皮质加工的独特相位的大脑表面的电活动的时间固定量度(Patel和Azzam,2005),它是与某人对某些刺激或特定事件的反应有关的内源性电位。ERP的典型示例是N200和P300。P300(Sutton等人,1967年)是一个正面峰值事件后约300毫秒显示的正峰波形,是ERP研究最多,使用最广泛,最突出的成分之一(David etal。,2020年; Kirasirova等。,2020)。P300分类检测是P300-BCI研究的重点,快速准确的识别对于改善p300-BCI的性能至关重要(Huang等人。,2022)。P300通常表现出低信噪比(SNR)(Zhang等人,2022)。为了突出其时间锁定的组件并最大程度地减少背景噪声,P300-BCI要求从多个试验中收集,汇总和平均数据以获得可靠的输出(Liu等人。,2018年),这是耗时且有效的。因此,在单审判中正确对p300进行分类是一个巨大的挑战。到目前为止,单个试验P300分类算法的准确性记录如下:Krusienski使用逐步线性判别分析(SWLDA)的平均分类精度约为35%。使用贝叶斯线性判别分析(BLDA)的平均分类准确性(BLDA)约为60%。Blankertz应用了收缩线性判别分析(SKLDA),并达到平均分类精度约为70%。张张通过时空判别分析(STDA),并达到平均分类准确性约为61%。Kaper开发的支持向量机(SVM)算法的平均分类精度达到64.56%。以及XIAO提出的判别规范模式匹配(DCPM)的价值为71.23%,表明DCPM在单验P300分类中的其他传统方法显着超过了其他较小的训练样本中的其他传统方法(Xu等人。,2018,2021; Xiao等。,2019a,b,2021; Wang等。,2020)。ma等。(2021)提出了一个基于胶囊网络的模型,该模型提高了单审P300的检测准确性,但是,由于大小的增加,计算变得复杂。Zhang等。 (2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。 这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人 ,2022)。 深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。 ,2020年),脑电图数据融合(Panwar等人Zhang等。(2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人,2022)。深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。,2020年),脑电图数据融合(Panwar等人如今,深度学习方法在基于脑电图的目标检测技术方面取得了巨大进展(Li等人,2021),基于此,一些学者提出了其他用于P300分类的方法,例如转移学习(Wei等人。,2020),incep a-eegnet(Xu等人,2022),组合分类器(Yu等人。,2021),主成分分析(PCA)(Li等人,2020)等目前,Daniela使用了CNN(Cecotti和